

Geotechnical Investigation

19 & 35 Dynes Road Rolleston Christchurch

> Submitted to: Hughes Developments Ltd Christchurch

ENGEO Limited 124 Montreal Street, Sydenham, Christchurch 8023 PO Box 373, Christchurch 8140, New Zealand Tel +64 3 328 9012 Fax +64 3 328 9013 www.engeo.co.nz

15.08.2019 12903.000.000_59

Contents

1	Introduction
2	Site Description
3	Geological Model5
3.1	Regional Geology5
3.2	Geomorphology5
3.3	Geohazards6
3.3.1	Seismicity6
3.3.2	Liquefaction and Lateral Spreading7
3.4	Site Investigation7
3.5	ECan Boreholes7
3.6	Groundwater
3.7	Site Seismic Class
4	Liquefaction Assessment
8	Limitations

Tables

Table 1:	Generalised Summary of Subsurface Conditions
Table 2:	Generalised Summary of ECan Boreholes

Figures

- Figure 1: Site Location Plan
- Figure 2: Historical Aerial Photography
- Figure 3: Nearby ECAN Borehole Locations

Appendices

- Appendix 1: Site Plan and Inferred Paleo Channels
- Appendix 2: Test Pit and Hand Auger Logs
- Appendix 3: ECan Borelogs

ENGEO Document Control:

Report Title	Geotechnical Investigation - 19 & 35 Dynes Road, Rolleston								
Project No.	12903.000.000 Doc ID 59								
Client	Hughes Developments Ltd Client Contact Kelvin Back								
Distribution (PDF)	Kelvin Back								
Date	Revision Details/Status WP Author Reviewe								
15/08/2019	Issued to Client DF JW GM								

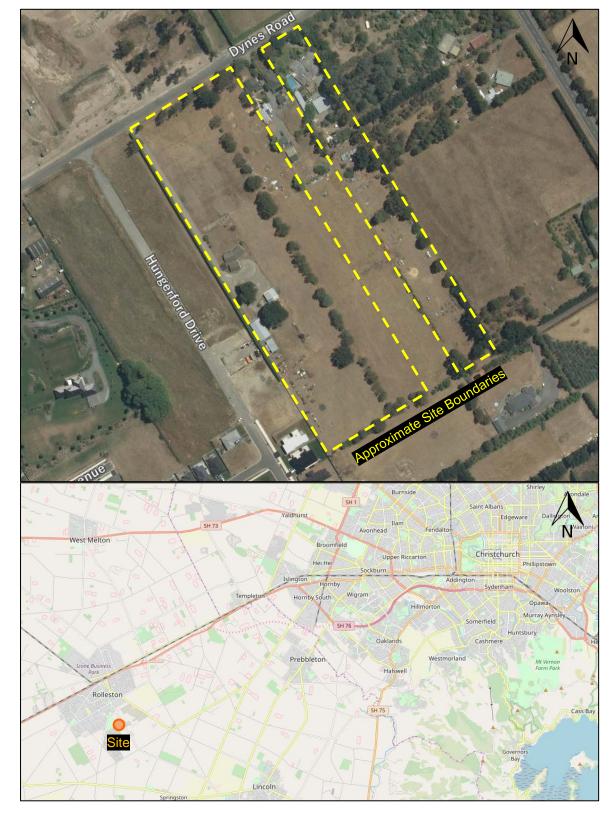
1 Introduction

ENGEO Ltd was requested by Hughes Development Ltd to undertake a geotechnical investigation of the property at 19 & 35 Dynes Road, Rolleston, Christchurch, as outlined in our variation proposal (ref. 12903.000.000_57).

The purpose of this assessment was to conceptualise a geological model of the site, assess the likely future land performance, comment on the suitability of the site for residential subdivision, address the requirements of Section 106 of the Resource Management Act (RMA) and provide recommendations for subdivision works and foundations for typical timber framed residential dwellings.

Our scope of works included the following:

- Complete a desktop study of relevant available geotechnical and geological publications, including the NZ Geotechnical and Environment Canterbury Databases.
- Undertake a geotechnical site walkover.
- Undertake six hand auger boreholes with associated Scala penetrometer tests to assess the near surface material types and strength characteristics.
- Organise and technically supervise the excavation of eight test pits, including geotechnical logging of the exposed soils.
- Preparation of this report outlining our findings on the ground conditions and the suitability of the site for residential subdivision, including geotechnical advice on the likely foundation Technical Category, conceptual foundation recommendations for typical timber framed residential dwellings, and address likely geohazards as required by Section 106 of the RMA.


2 Site Description

The site is made up of two properties that will be discussed as one. The site covers a total area of 4.8 ha and has the following legal descriptions (Canterbury Maps):

- 19 Dynes Road Lot 48 DP 8530
- 19 Dynes Road Lot 50 DP 8530
- 35 Dynes Road RS 41726

It is located approximately 2 km south of Rolleston town centre. The site is bound to the northwest by Dynes Road, the southwest and northeast by residential subdivisions and the southeast by rural properties (Figure 1).

Figure 1: Site Location Plan

Images sourced from Canterbury Maps and "© OpenStreetMap contributors". Not to scale.

3 Geological Model

3.1 Regional Geology

The site has been regionally mapped by GNS (Forsyth et al., 2018) as being underlain by grey river alluvium.

3.2 Geomorphology

The site comprises relatively flat ground, with gentle undulations and depressions in some areas. As evident on aerial imagery (Canterbury Maps, 2019) and observed during our site walkover conducted on 2 August 2019, undulating and depressed ground can be attributed to paleo-channels, which traverse the site in a general northwest to southeast trend. Based on observations, silt and sand deposits with variable thickness (up to 1.0 m) are expected to have in-filled the paleo-channels where they have not remained as channel features. Inferred paleo-channels have been mapped to give an indication of areas with potential channel in-fill (Appendix 1).

Figure 2: Historical Aerial Photography

1940 - 1944

Image sourced from Canterbury Maps

1990 - 1994



Image sourced from Canterbury Maps

3.3 Geohazards

3.3.1 Seismicity

There are no known or mapped faults in the immediate area of the site, however the site may be at risk of ground shaking induced by movement of proximal or distal faults.

The site is located between two recently discovered fault systems, the Greendale Fault and the Port Hills Fault, the ruptures of which initiated the ongoing Canterbury Earthquake Sequence (CES). The Greendale Fault has been mapped approximately 5 km northwest / west of the site and trends roughly east-west with a surface rupture of approximately 28 km (GNS, 2015), while the Port Hills Fault remains unmapped as the fault did not rupture at the surface. Movement on the Port Hills Fault is believed to have extended to within 1 km to 2 km below ground surface.

Large regional areas of faulting (GNS, 2015) namely the Ashley Fault, Porters Pass - Amberley Fault Zone, and the Hope and Alpine Faults, are further afield but present a high seismic hazard to the Christchurch area due to the anticipated size of earthquakes generated. The largest of these faults is the Alpine Fault, which has a return period of 250 - 300 years and is expected to produce a M8 earthquake. The last rupture on the Alpine Fault is believed to have occurred in 1717 (Pettinga et al., 2001).

3.3.2 Liquefaction and Lateral Spreading

The site is located within an area mapped as 'damaging liquefaction unlikely' (NZGD Map CGD5140, 2012).

3.4 Site Investigation

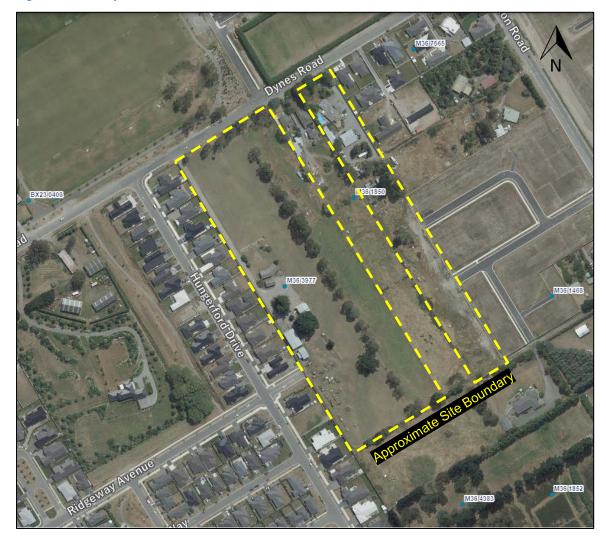
Site investigations to assess the shallow subsurface material types and strength characteristics were undertaken by ENGEO on 6 August 2019. The investigations comprised eight hand auger boreholes and ten test pit investigations with associated Scala penetrometer tests.

The investigations revealed subsurface conditions across the site are consistent with the published geological mapping, as summarised in Table 1. Hand auger and test pit logs are included in Appendix 2 of this report.

Soil Type	Depth to Top of Layer (m)	Layer Thickness (m)	Density / Consistency	Additional Comments
TOPSOIL	0.0	0.2 - 0.3	Stiff	
SILT / SAND	0.2	0.2 - 0.8	Stiff to Very Stiff / Loose to Dense	Not present at all test locations
Silty GRAVEL / Sandy GRAVEL	0.2 - 1.0	Unknown	Dense to Very Dense	-

Table 1: Generalised Summary of Subsurface Conditions

3.5 ECan Boreholes


A review of three deep ECan borehole logs was conducted. The first (M36/5254), is located on-site, and appears to be a water well servicing the existing dwelling. The other boreholes are located on the northern boundary (M36/7902) and western boundary (M36/4221). A borehole is located south of Selwyn Road (M36/20236) but has no borehole log associated with it on Canterbury Maps.

Well summaries from the three holes of interest are presented in Appendix 3 and summarised in Table 2 below.

Table 2: Generalised Summary of ECan Boreholes

ECan Borehole	Total Depth (m)	Water Level (m)	Generalised borelog as logged by driller
M36/7565	35	12.5	Gravel to 35 m depth.
BX23/0408	36	11.1	Gravel from 0.5 m to 36 m depth.
M36/4386	24	10.7	Gravel to 24 m depth.

Figure 3: Nearby ECAN Borehole Locations

Aerial photograph sourced from Canterbury Maps. Not to scale.

3.6 Groundwater

Groundwater is recorded in the surrounding boreholes between approximately 10.7 m and 12.5 m depth.

3.7 Site Seismic Class

In accordance with NZS 1170.5:2004, Class D applies to this particular site, defining it as a 'deep soft soil site'.

4 Liquefaction Assessment

Based on our site investigation and observations, and owing to the nature of the subsurface materials and depth to groundwater at the site, we consider the potential for liquefaction and lateral spreading on the site to be very low.

We therefore consider the site of the proposed subdivision to have Technical Category 1 (TC1) future land performance whereby future land damage from liquefaction is unlikely, and ground settlements are expected to be within normally accepted tolerances.

5 RMA Section 106 Requirements and Suitability to Subdivide

Section 106 of the Resource Management Act 1991 states a consent authority may refuse to grant a subdivision consent, or may grant a consent subject to specific consent conditions if it considers that:

- There is a significant risk from natural hazards; or
- Sufficient provision has not been made for legal or physical access to each allotment to be created by the subdivision.

An assessment of the risk from natural hazards as required by the RMA includes the following:

- The likelihood of natural hazards occurring (whether individually or in combination);
- The material damage to land in respect of which the consent is sought, other land, or structures that would result from natural hazards; and
- Any likely subsequent use of the land in respect of which the consent is sought that would accelerate, worsen, or result in material damage of the kind referred to in paragraph (b).

We have assessed the risk of natural hazards at the site in accordance with Section 106 of the Resource Management Act (RMA) and considered the risk to the site from rockfall, inundation (debris), slope stability, subsidence, flooding and tsunami. Based on our observations and the nature of the site, its performance during the CES, and the site's distance from the nearest significant watercourse, we consider it is unlikely for the site to be subject to natural hazards such as rockfall, inundation (debris), slope stability, subsidence, flooding and tsunami. As such, the site is considered suitable for subdivision from a geotechnical perspective.

6 Geotechnical Recommendations

6.1 Earthworks

Earthworks carried out for the subdivision shall be in accordance with NZS 4404:2010, Land Development and Subdivision Infrastructure and NZS 4431:1989, Code of Practice for Earth filling for Residential Development. In particular, any areas to receive fill should be stripped of all vegetation, topsoil, non-engineered fill, soft or organic soils prior to fill placement.

Fill may comprise clean natural sandy gravel or silty soils, or clean imported soils and / or granular fill, compacted to achieve no less than 95% of maximum dry density. Fill faces steeper than 2V:1H and higher than 600 mm should be retained and referred back to ENGEO. Although unlikely, where any springs or groundwater seeps are encountered, they should be intercepted with suitable drainage and discharged to a Council approved outlet.

All unretained batters of pond and stormwater drains constructed with the native sandy gravel material should be at an inclination no steeper than 1V:3H, with protection schemes in place to control erosion of the formed batters within the waterways.

A comprehensive earthworks specification should be provided to the earthworks contractor prior to starting excavations and an inspection / testing regime agreed, along with a robust erosion and sediment control plan.

6.2 Subdivision Roading

Vegetation, any organic or deleterious material, topsoil and non-engineered fill should be removed from the site under pavement areas prior to aggregate placement. Based on our observations during testing, we consider the natural ground below the topsoil at the site should provide an adequate subgrade for the proposed pavement areas.

6.3 Stormwater Control

Concentrated stormwater flows from all impermeable areas must be collected and carried in sealed pipes to the Council system or an alternative disposal point subject to approval from Council. Uncontrolled stormwater must not be allowed to saturate the ground as this will potentially affect future foundation performance both statically and during future seismic activity.

6.4 Foundations

Foundations for future proposed residential dwellings within the subdivision may comprise shallow pad, strip, or slab foundations designed in accordance with the provisions of NZS 3604 Timber Framed Buildings.

Site specific testing will be required for Building Consent, to confirm the bearing materials and capacity. For preliminary design, we anticipate that a geotechnical Ultimate Bearing Capacity of 300 kPa may be assumed for foundations bearing on natural silt, sandy gravel or engineered fill, below any topsoil. We anticipate this to be typically below 0.2 m depth based on our subsurface investigations.

7 References

Canterbury Maps, Groundwater. Retrieved July 2019, from http://canterburymaps.govt.nz/Viewer.

- Canterbury Maps, Historic Aerial Imagery. Retrieved August 2019, from https://apps.canterburymaps.govt.nz/CanterburyHistoricAerialImagery.
- Forsyth, P., Barrell, D. J., & Jongens, R. (2008). Sheet 16 Geology of the Christchurch Area 1:250,000. Lower Hutt: Institute of Geological and Nuclear Sciences.
- GNS Science (2015). New Zealand Active Faults Database. Retrieved November 2018, from http://data.gns.cri.nz /af.
- Pettinga J.R., Yetton M.D., Van Dissen R.J., & Downes G. (2001). Earthquake Source Identification and Characterisation for the Canterbury Region, South Island, New Zealand. Bulletin of the New Zealand Society for Earthquake Engineering, Vol 34, No. 4, pp 282-317.
- Selwyn District Council, Property Search, retrieved August 2019, from https://www.selwyn.govt.nz/my-property/rates/search-properties.
- Standards Association of New Zealand (1989). NZS 4431:1989. Code of Practice for Earthfilling for Residential Development.
- Standards Association of New Zealand (2004). NZS 1170.5:2004. Structural Design Actions Part 5: Earthquake Actions – New Zealand.
- Standards Association of New Zealand (2010). NZS 3604:2010. Timber Framed Buildings.
- Standards Association of New Zealand (2010). NZS 4404:2010. Land Development and Subdivision Infrastructure.
- The Ministry of Business, Innovation, and Employment (2016). New Zealand Geotechnical Database. Retrieved November 2018, from https://www.nzgd.org.nz.

8 Limitations

- i. We have prepared this report in accordance with the brief as provided. This report has been prepared for the use of our client, Hughes Developments Ltd, their professional advisers and the relevant Territorial Authorities in relation to the specified project brief described in this report. No liability is accepted for the use of any part of the report for any other purpose or by any other person or entity.
- ii. The recommendations in this report are based on the ground conditions indicated from published sources, site assessments and subsurface investigations described in this report based on accepted normal methods of site investigations. Only a limited amount of information has been collected to meet the specific financial and technical requirements of the client's brief and this report does not purport to completely describe all the site characteristics and properties. The nature and continuity of the ground between test locations has been inferred using experience and judgement and it should be appreciated that actual conditions could vary from the assumed model.
- iii. Subsurface conditions relevant to construction works should be assessed by contractors who can make their own interpretation of the factual data provided. They should perform any additional tests as necessary for their own purposes.
- iv. This Limitation should be read in conjunction with the Engineering NZ / ACENZ Standard Terms of Engagement.
- v. This report is not to be reproduced either wholly or in part without our prior written permission.

We trust that this information meets your current requirements. Please do not hesitate to contact the undersigned on (03) 328 9012 if you require any further information.

Report prepared by

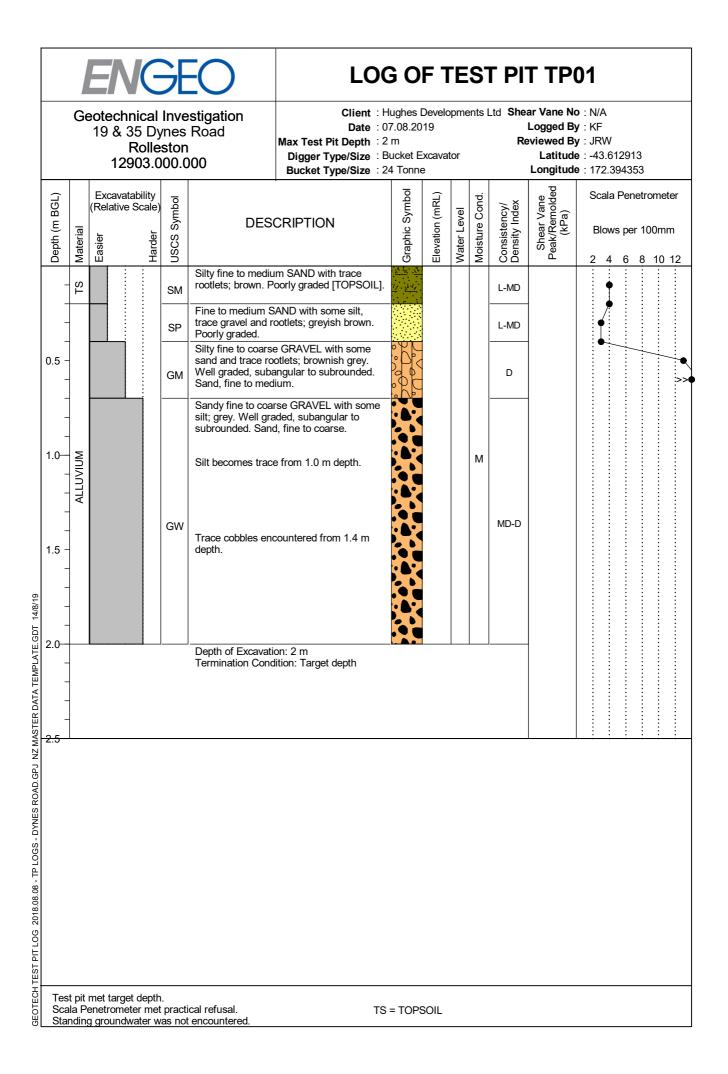
Jed Watts Engineering Geologist

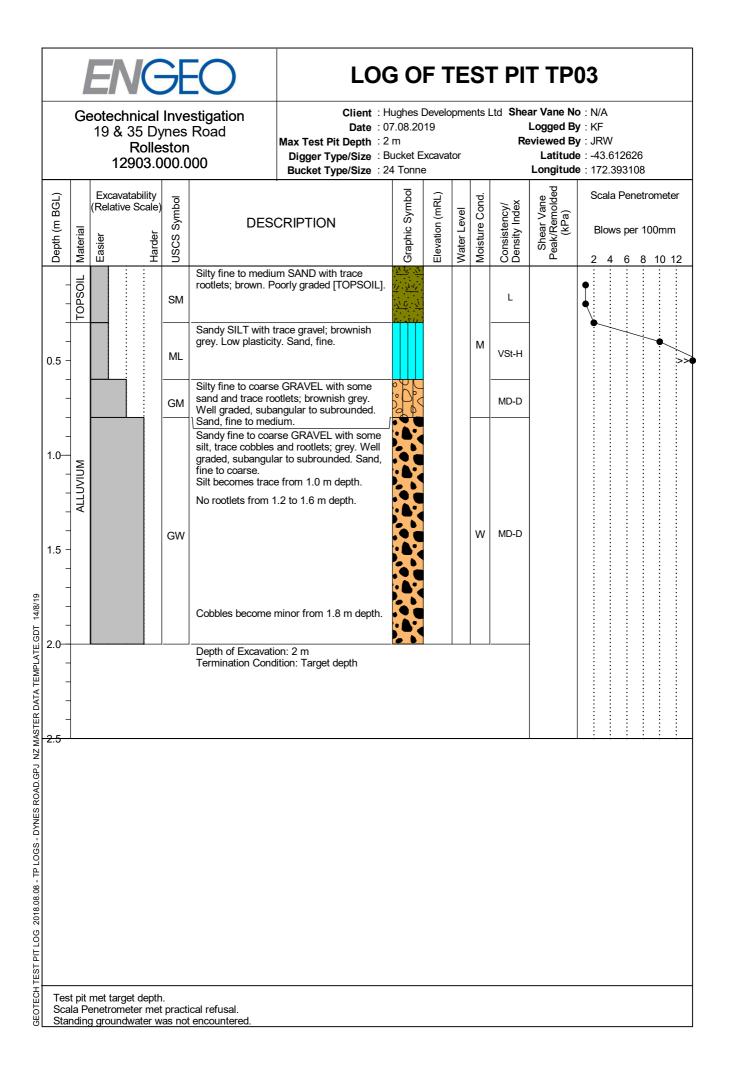
Report reviewed by

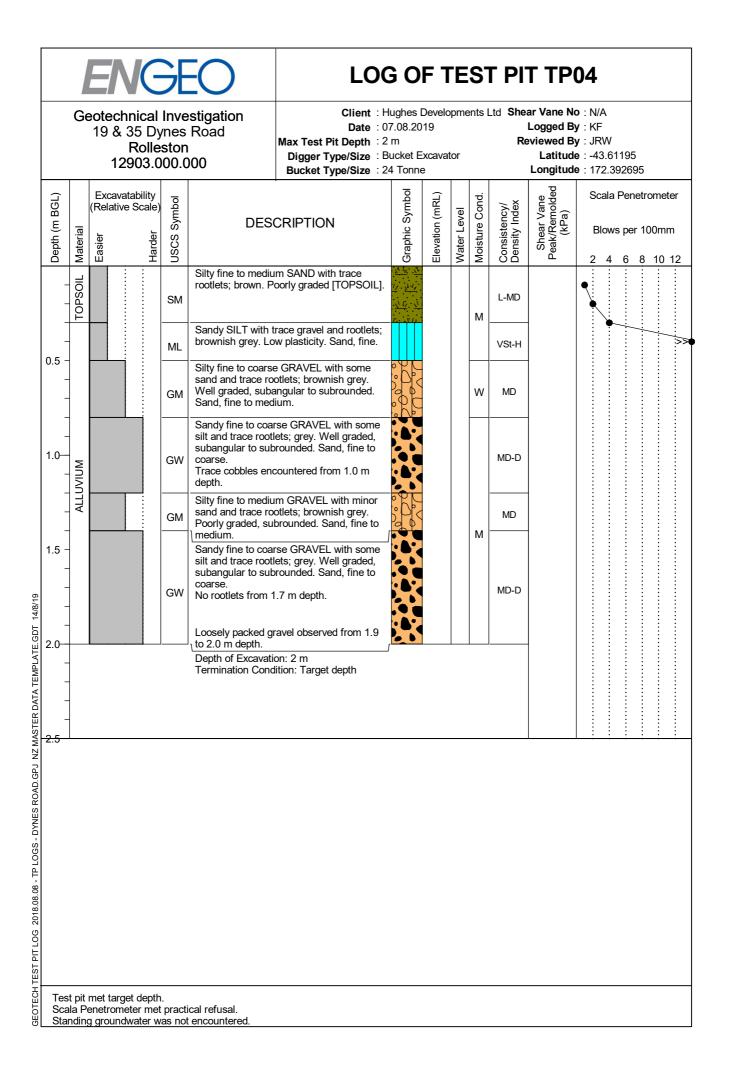
Greg Martin, CMEngNZ (PEngGeol) Principal Engineering Geologist

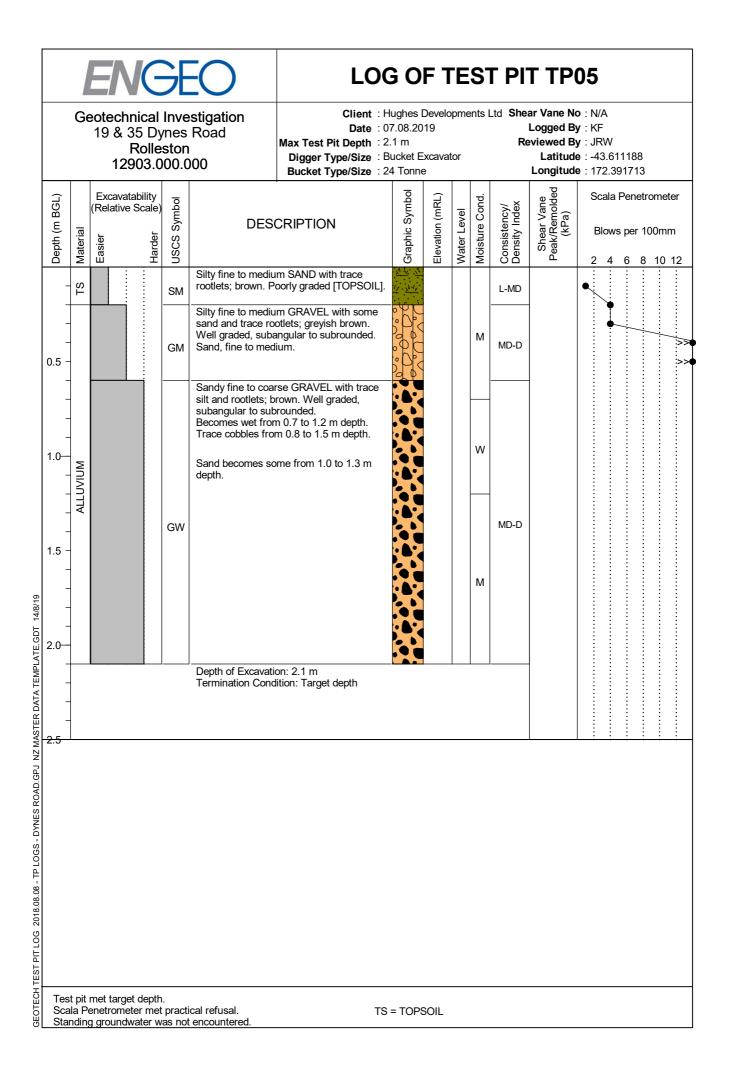


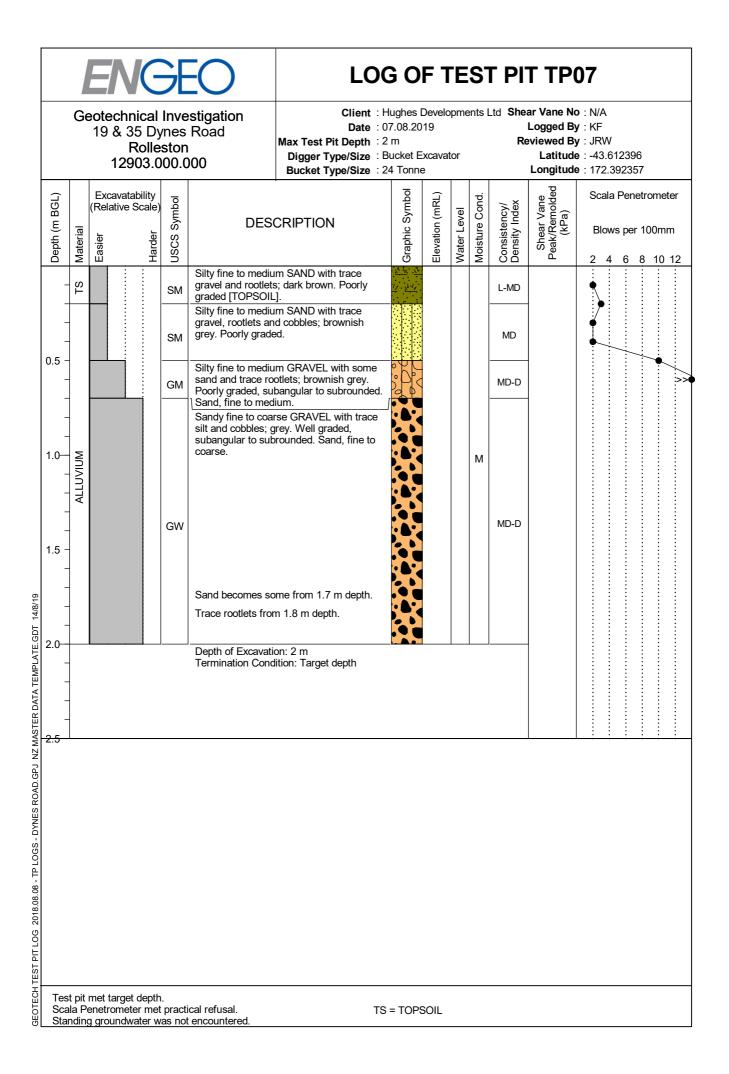
APPENDIX 1: Site Plan and Inferred Paleo Channels

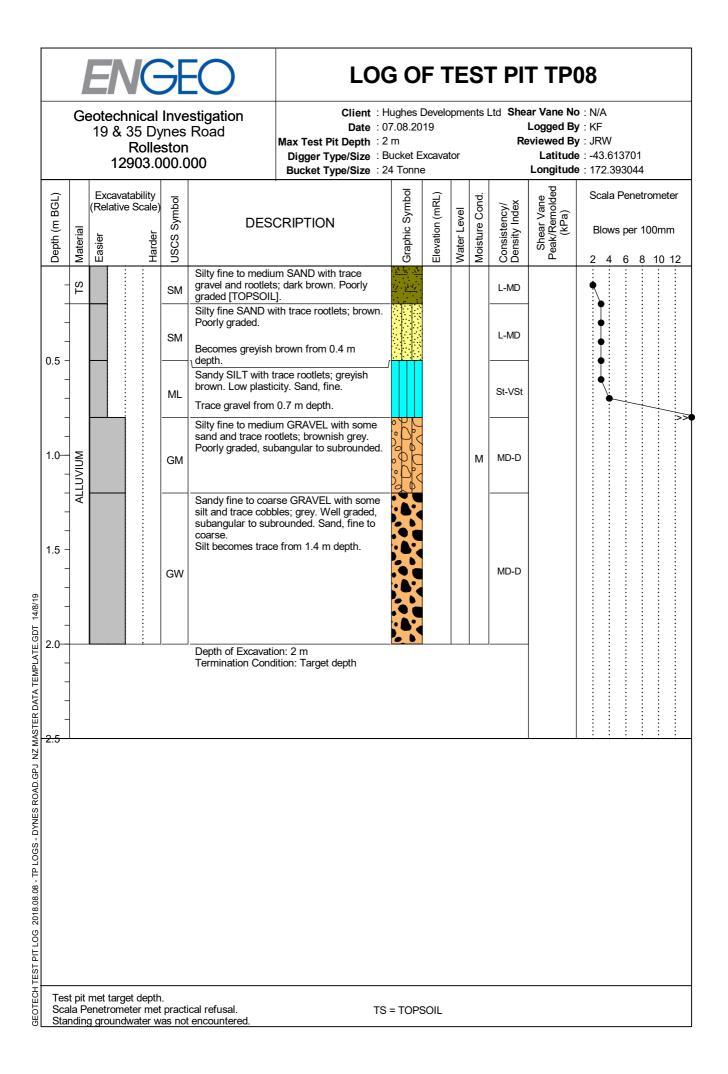


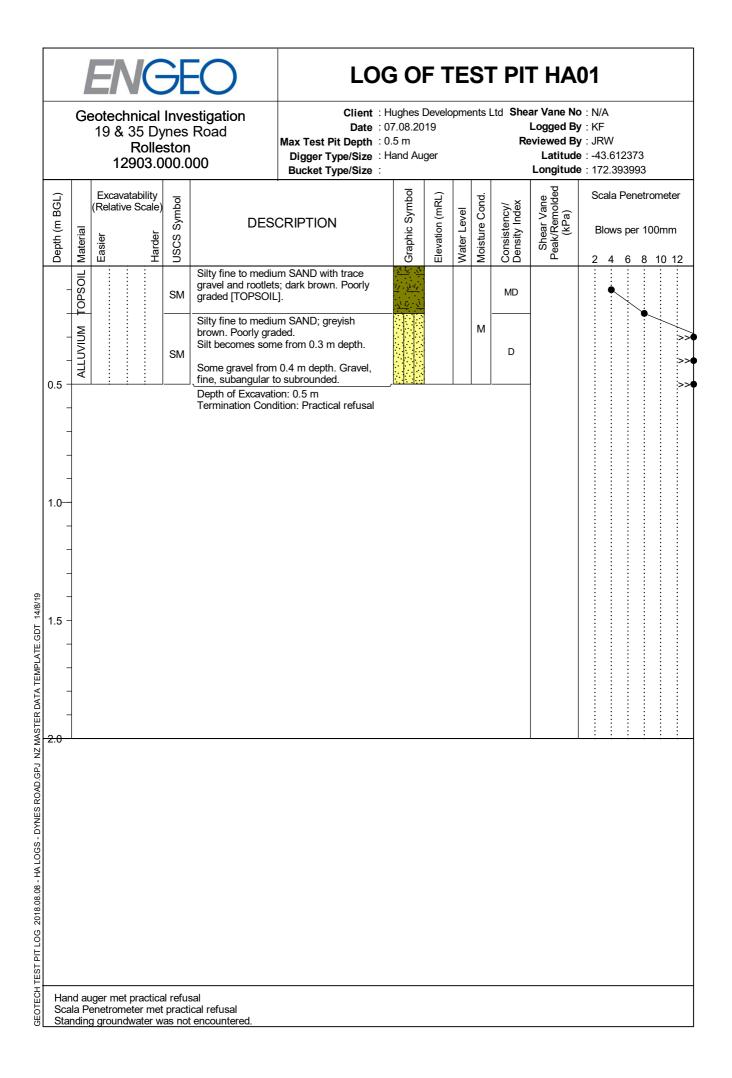

APPENDIX 2:

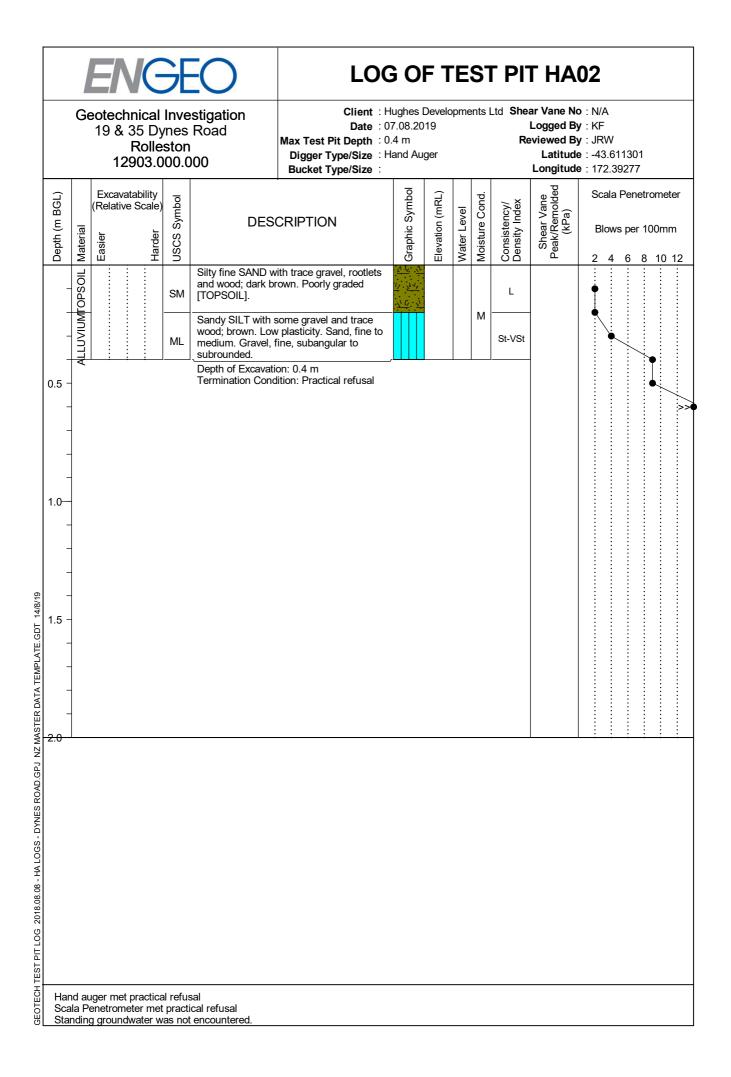

Test Pit and Hand Auger Logs

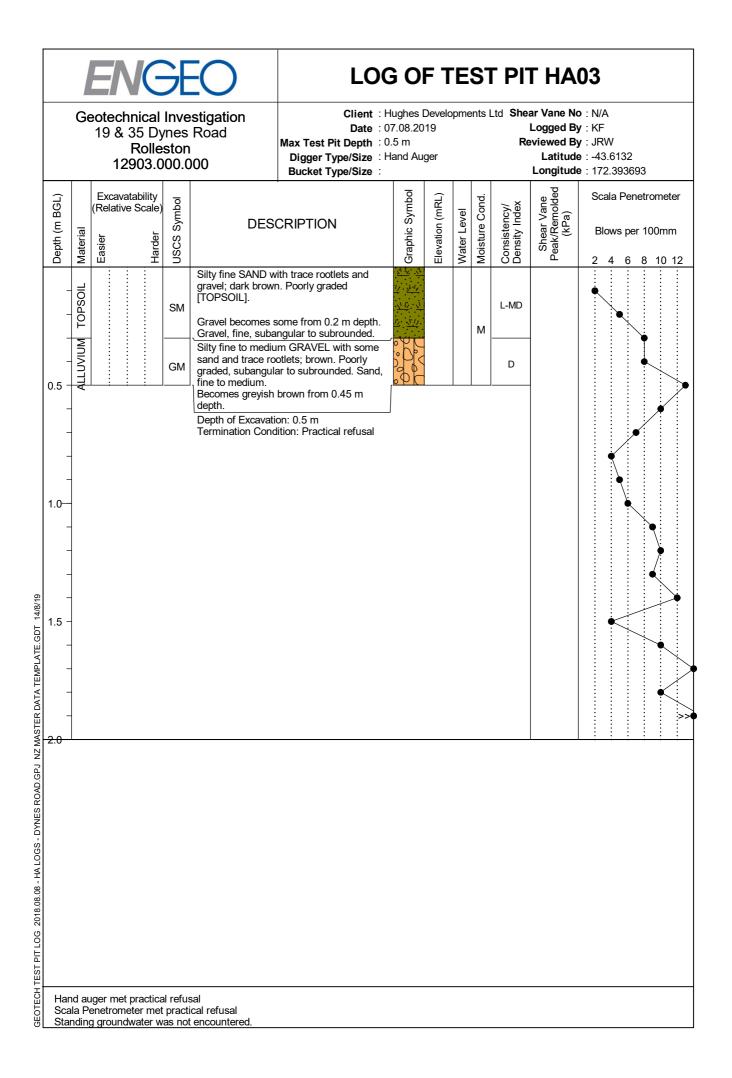


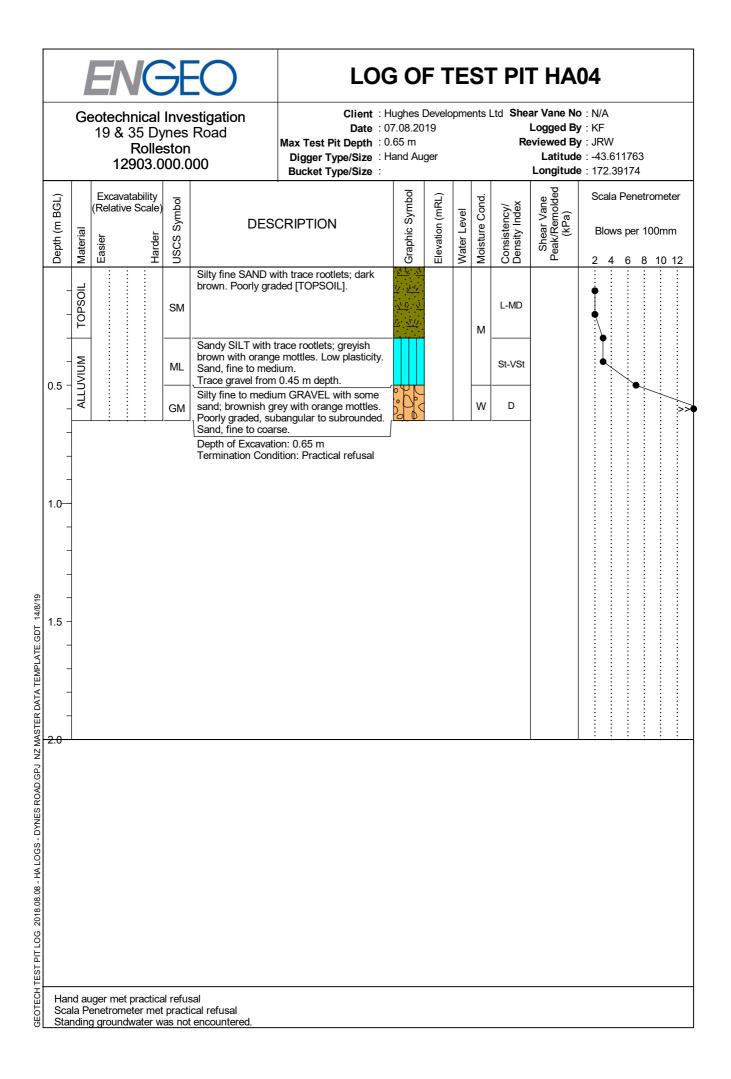

Material	19 & 35 Dy Rolle	/nes ston	Road	Date : 0		Develo					
Material			Geotechnical Investigation 19 & 35 Dynes Road Rolleston 12903.000.000			Client: Hughes Developments LtdShear Vane No: N/ADate: 07.08.2019Logged By: KFMax Test Pit Depth: 2.1 mReviewed By: JRWDigger Type/Size: Bucket ExcavatorLatitude: -43.611748Bucket Type/Size: 24 TonneLongitude: 172.393446					
	Easier Harder	USCS Symbol	DESCRIPTION			Elevation (mRL)	Water Level	Moisture Cond.	Consistency/ Density Index	Shear Vane Peak/Remolded (kPa)	Scala Penetrometer Blows per 100mm 2 4 6 8 10 12
TS		SM	Silty fine to mediu rootlets; brown. P	m SAND with trace porly graded [TOPSOIL].	$\frac{\underline{x}^{1}}{\underline{y}_{1}} \cdot \frac{\underline{x}^{1}}{\underline{x}^{1}} \cdot \frac{\underline{x}^{1}}{\underline{x}^{1}}$		-	_	L-MD		
-		SP	trace gravel and re graded. Becomes brownis depth. Lens of gravel at ().5 m depth.				М	L-MD		
_		SW	gravel; greyish bro	Fine to coarse SAND with trace silt and gravel; greyish brown. Well graded. Becomes wet from 0.8 m depth.					D		, fr
ALLUVIUM		GM	sand and trace ro Well graded, suba				w	MD-D			
-		GW	silt; grey. Well gra subrounded. Sand Sand becomes so depth.	Sandy fine to coarse GRAVEL with some silt; grey. Well graded, subangular to subrounded. Sand, fine to coarse. Sand becomes some from 1.7 to 1.8 m depth. Trace cobbles from 1.9 m depth.					MD-D		
-		<u></u>	Depth of Excavation Termination Cond	on: 2.1 m ition: Target depth							
	st pit	st pit met target depth	SW SW GM GW	Image: Construct of the second sec	depth. Lens of gravel at 0.5 m depth. Fine to coarse SAND with trace silt and gravel; greyish brown. Well graded. Becomes wet from 0.8 m depth. Silty fine to coarse GRAVEL with some sand and trace rootlets; brownish grey. Well graded, subangular to subrounded. Sand, fine to medium. GM Sandy fine to coarse GRAVEL with some silt; grey. Well graded, subangular to subrounded. Sand, fine to coarse. Sand becomes some from 1.7 to 1.8 m depth. Trace cobbles from 1.9 m depth. Depth of Excavation: 2.1 m Termination Condition: Target depth	depth. Lens of gravel at 0.5 m depth. Fine to coarse SAND with trace silt and gravel; greyish brown. Well graded. SW Becomes wet from 0.8 m depth. SW Becomes wet from 0.8 m depth. GM Silty fine to coarse GRAVEL with some sand and trace rootlets; brownish grey. Well graded, subangular to subrounded. Sand, fine to medium. GM Sandy fine to coarse GRAVEL with some silt; grey. Well graded, subangular to subrounded. Sand, fine to coarse. Sand becomes some from 1.7 to 1.8 m depth. Trace cobbles from 1.9 m depth. Depth of Excavation: 2.1 m Termination Condition: Target depth. Depth of Excavation: 2.1 m Termination Condition: Target depth. Stipt met target depth. Stipt met target depth. Termination Condition: Target depth.	depth. Lens of gravel at 0.5 m depth. Fine to coarse SAND with trace silt and gravel; greyish brown. Well graded. SW Becomes wet from 0.8 m depth. GM Silty fine to coarse GRAVEL with some sand and trace rootlets; brownish grey. Well graded, subangular to subrounded. Sandy fine to coarse GRAVEL with some silt; grey. Well graded, subangular to subrounded. GM Sandy fine to coarse GRAVEL with some silt; grey. Well graded, subangular to subrounded. Sand prime to coarse GRAVEL with some silt; grey. Well graded, subangular to subrounded. Sand the to coarse. Sandbecomes some from 1.7 to 1.8 m depth. Trace cobbles from 1.9 m depth. Depth of Excavation: 2.1 m Termination Condition: Target depth Depth of Excavation: 2.1 m Termination Condition: Target depth Set performed to metame. Set performed to a subrounded to a subro	the pretrometer met practical refusal.	Image: State of gravel at 0.5 m depth. Fine to coarse SAND with trace silt and gravel; greyish brown. Well graded. SW Becomes wet from 0.8 m depth. Silty fine to coarse GRAVEL with some sand and trace routlets; brownish grey. Well graded, subangular to subrounded. Sand, fine to medium. Sandy fine to coarse GRAVEL with some sit; grey. Subrounded. Sand, fine to coarse. Sand, fine to coarse GRAVEL with some sit; grey. Well graded, subangular to subrounded. Sand prime to coarse GRAVEL with some sit; grey. Well graded, subangular to subrounded. Sand prime to coarse GRAVEL with some sit; grey. Well graded, subangular to subrounded. Sand prime to coarse GRAVEL with some sit; grey. Well graded, subangular to subrounded. Sand becomes some from 1.7 to 1.8 m depth. Trace cobbles from 1.9 m depth. Depth of Excavation: 2.1 m Termination Condition: Target depth. Termination Condition: Target depth. Sand prime target depth. Termination Condition: Target depth. Termination Condition: Target depth. Sand prime target depth. Sand prime target depth. Sand prime target depth. Sand prime target depth.	a lepth. Lens of gravel at 0.5 m depth. Fine to coarse SAND with trace silt and gravel; greyish brown. Well graded. D SW Becomes wet from 0.8 m depth. SW Becomes wet from 0.8 m depth. GM Sitty fine to coarse GRAVEL with some sand and trace rootlets; brownish grey. Well graded, subanguiar to subrounded. Sandy fine to medium. GM Sandy fine to coarse GRAVEL with some sait; grey. Well graded, subanguiar to subrounded. Sand, fine to coarse. Sandy fine to coarse GRAVEL with some sit; grey. Well graded, subanguiar to subrounded. Sand, fine to coarse. MD-D GW GW Trace cobbles from 1.7 to 1.8 m depth. Trace cobbles from 1.9 m depth. MD-D Depth of Excavation: 2.1 m Termination Condition: Target depth. Termination Condition: Target depth	to prime target depth.

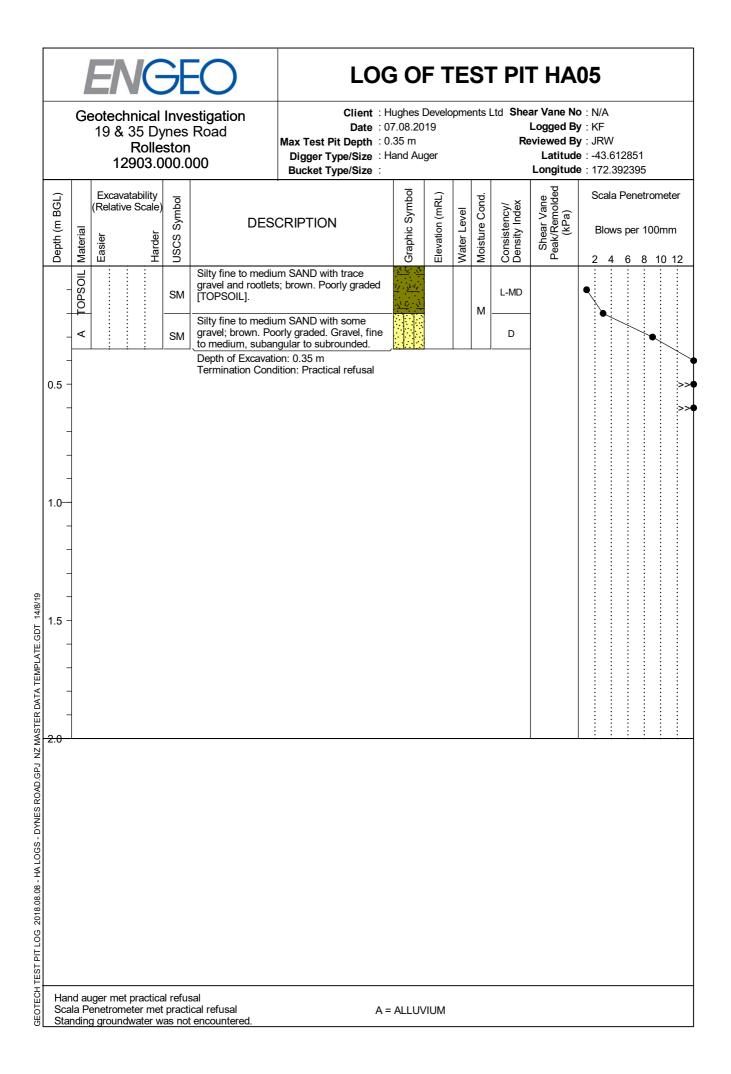


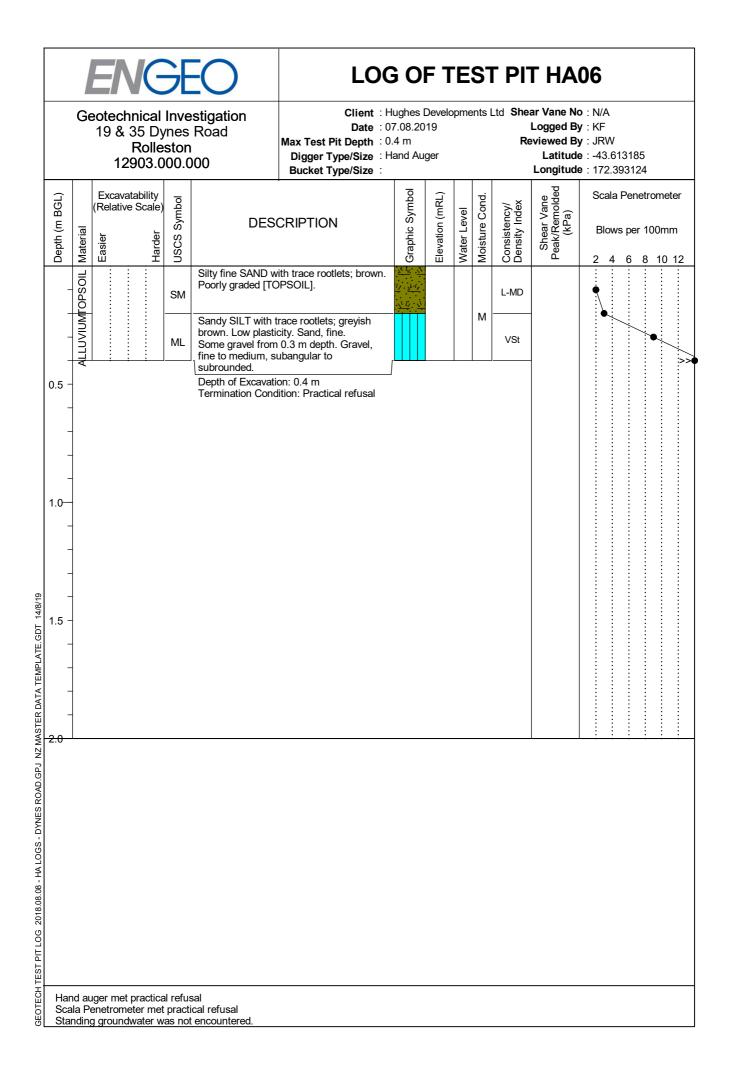





		eotechnical 19 & 35 D Rolle 12903.0	Inve ynes eston	stigation Road	Client	: Hughes I : 07.08.20 : 2 m : Bucket E	Develo 19 Excava	opme		_td She	TTP ar Vane No Logged B eviewed B Latitud Latitud	o:N/A y:KF y:JRW e:-43.61			
Depth (m BGL)	Material	Excavatability (Relative Scale is is is is is is is is is is is is is	July 1	DESCRIPTION			Elevation (mRL)	Water Level	Moisture Cond.	Consistency/ Density Index	Shear Vane Peak/Remolded (kPa)	Scala F Blows 2 4		00mm	
-	TOPSOIL		SM	Silty fine to mediu rootlets; brown. Po	m SAND with trace oorly graded [TOPSOIL	_]. <u> </u>				L-MD		•			
- 0.5 -			SM		m SAND with trace rown. Poorly graded. 0.6 m depth.					MD			•		/>
- - 1.0	V		GM	Silty fine to medium GRAVEL with some sand and trace rootlets; brownish grey. Poorly graded, subangular to subrounded. Sand, fine to medium.					м	MD-D					
- - - 1.5 -	ALLUVIUM		GW	silt and cobbles; g subangular to sub coarse.	Sandy fine to coarse GRAVEL with trace silt and cobbles; grey. Well graded, subangular to subrounded. Sand, fine to coarse. Becomes wet from 1.5 m depth.					 MD-D					
-				Sand becomes so depth.	me from 1.8 to 2.0 m				w						
2.0				Depth of Excavation Termination Cond	on: 2 m ition: Target depth										
- 2.0- - - - - - - - - - - - - - - - - - -															
Sca	la Pe	met target deptl enetrometer me g groundwater v	t pract	cal refusal. encountered.											







Bore or Well No Well Name	M36/7565 551 Dynes	Road		Can Begio	ironment terbury nal Council ra Taiao ki Waitaha
Owner	Mr & Mrs T	& N Buhrs		Kaunihe	ra Taiao ki Waitaha
Well Number		M36/7565		File Number	CO6C/21289
Owner	Owner		ihrs	Well Status	Active (exist, present)
Street/Road		551 Dynes Road		NZTM Grid Reference	BX23:51067-71240
Locality		Rolleston		NZTM X and Y	1551067 - 5171240
Location Description				Location Accuracy	50 - 300m
CWMS Zone		Selwyn - Waihora		Use	Domestic Supply,
Groundwater Allocatio	on Zone	Selwyn-Waimakari	ri	Water Level Monitoring	
Depth		35.00m		Water Level Count	0
Diameter		150mm		Initial Water Level	12.50m below MP
Measuring Point Desc	ription			Highest Water Level	
Measuring Point Eleva	ition	42.15m above MSL (Lyttelton 1937)		Lowest Water Level	
Elevation Accuracy		< 5 m		First reading	
Ground Level		0.00m above MP		Last reading	
Strata Layers		6		Calc Min 95%	11.60m below MP
Aquifer Name		Linwood Gravel		Aquifer Tests	0
Aquifer Type				Yield Drawdown Tests	2
Drill Date		01 Jan 2004		Max Tested Yield	6 l/s
Driller		Dynes Road Drillin	g	Drawdown at Max Tested Yield	10 m
Drilling Method	Drilling Method			Specific Capacity	0.37 l/s/m
Casing Material	Casing Material			Last Updated	08 Nov 2013
Ритр Туре				Last Field Check	
Water Use Data		No			

Screens

Screen No.	Screen Type	Top (m)	Bottom (m)	Slot Size (mm)	Slot Length (mm)	Diameter (mm)	Leader Length (mm)
1	Stainless steel	33	35				

Step Tests

Step Test Date	Step	Yield	Yield GPM	DrawDown	Step Duration
01 Jan 2004	1	3.4	44.8738251	9.14	2
01 Jan 2004	2	5.7	75.2296448	10.36	3

No comments for this well

Borelog for well M36/7565

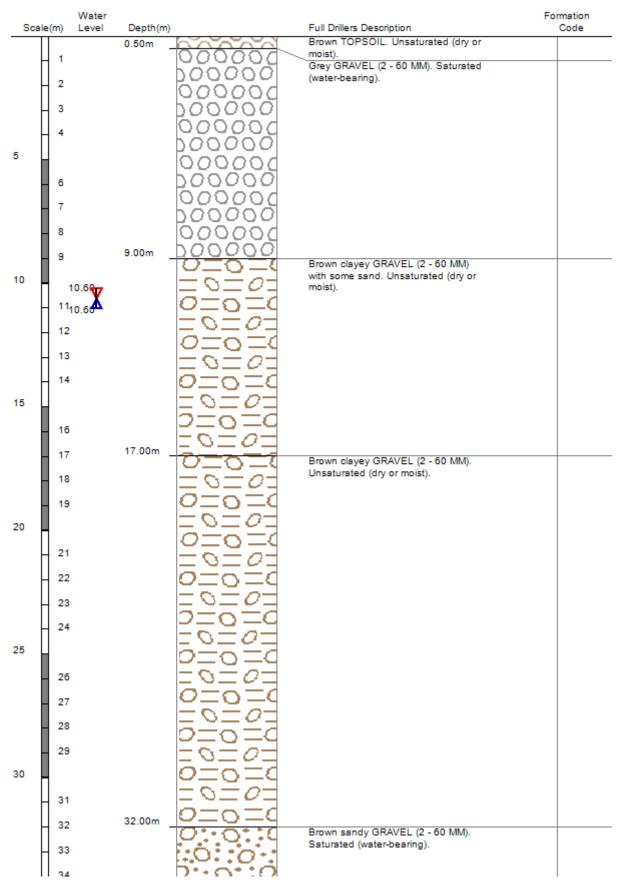
Grid Reference (NZTM): 1551067 mE, 5171240 mN Location Accuracy: 50 - 300m Ground Level Altitude: 42.2 m +MSD Accuracy: < 0.5 m Driller: Dynes Road Drilling Drill Method: Cable Tool Borelog Depth: 35.0 m Drill Date: 01-Jan-2004

Scale(m)	Water Level	Depth(m)		Full Drillers Description	Formation Code
		2.00m		Small medium gravel, sandy	SP
Н		2.00m	0::0::0	Small medium gravel, sandy	SP
H			0.000	Small medium gravel, traces yellow silt	RI?
5		6.80m	0=0=0=0		
- H		6.80m	0:.0::0::	Small medium gravel, traces yellow silt	RI?
10				Small medium gravels sandy	RI
Н		12.40m			
H		12.40m	0.0.0.0	Small medium gravels sandy Small medium gravel, sandy	RI
20		21.20m			
25		21.20m		Small medium gravel, sandy Small medium gravels, sandy, water	RI-BR
30		32.00m		Small madium crauple, conducturates	
		32.00m	0.0.0.0.0	Small medium gravels, sandy, water Small gravels less sand	RI-BR LI-1
		35.00m		omali graveis iess sano	

Bore or Well No	BX23/0408				nvironment anterbury egional Council unihera Taiao ki Waitaha
Well Name	Dynes Road				anterbury
Owner	Selwyn District C	Council		Ka	unihera Taiao ki Waitaha
Well Number		BX23/0408		File Number	CRC152641
Owner	Owner		Council	Well Status	Active (exist, present)
Street/Road		Dynes Road		NZTM Grid Reference	BX23:50678-71087
Locality		Rolleston		NZTM X and Y	1550678 - 5171087
Location Description				Location Accuracy	10 - 50m
CWMS Zone		Selwyn - Waiho	ora	Use	Irrigation,
Groundwater Allocatio	on Zone	Selwyn-Waima	kariri	Water Level Monitoring	
Depth	Depth			Water Level Count	1
Diameter		200mm		Initial Water Level	11.10m below MP
Measuring Point Desc	ription	Top of Casing		Highest Water Level	11.10m below MP
Measuring Point Eleva	tion			Lowest Water Level	11.10m below MP
Elevation Accuracy				First reading	31 Oct 2014
Ground Level		0.50m below M	P	Last reading	31 Oct 2014
Strata Layers		13		Calc Min 95%	
Aquifer Name				Aquifer Tests	1
Aquifer Type				Yield Drawdown Tests	3
Drill Date		31 Oct 2014		Max Tested Yield	
Driller		East Coast Dril	ling	Drawdown at Max Tested Yield	
Drilling Method		Air Rotary		Specific Capacity	1.85 l/s/m
Casing Material		Steel		Last Updated	03 Apr 2019
Pump Type				Last Field Check	31 Oct 2014
Water Use Data		No			

Screens

Screen No.	Screen Type	Top (m)	Bottom (m)	Slot Size (mm)	Slot Length (mm)	Diameter (mm)	Leader Length (mm)
1	Stainless steel	99	102			175	1000


Step Tests

Step Test Date	Step	Yield	Yield GPM	DrawDown	Step Duration
17 Nov 2014	1	8.7	114.824196	4.7	1
17 Nov 2014	2	19	250.765488	14.5	1
17 Nov 2014	3	29	382.7473	31.5	1

Borelog for well BX23/0408 page 1 of 3

Grid Reference (NZTM): 1550678 mE, 5171087 mN Location Accuracy: 10 - 50m Ground Level Altitude: m +MSD Accuracy: Driller: East Coast Drilling Drill Method: Air Rotary Borelog Depth: 102.0 m Drill Date: 31-Oct-2014

Bore or Well No	M36/4383 SPRINGSTON ROLLESTON RD WARMAN D.G.			Envi	ironment
Well Name				Can	ironment terbury nal Council ra Taiao ki Waitaha
Owner				Kaunihe	ra Taiao ki Waitaha
Well Number		M36/4383		File Number	
Owner		WARMAN D.G.		Well Status	Active (exist, present)
Street/Road		SPRINGSTON ROLLESTON RD		NZTM Grid Reference	BX23:51117-70780
Locality		ROLLESTON		NZTM X and Y	1551117 - 5170780
Location Description				Location Accuracy	50 - 300m
CWMS Zone		Selwyn - Waihora		Use	Domestic Supply,
Groundwater Allocation Zone		Selwyn-Waimakariri		Water Level Monitoring	
Depth		24.00m		Water Level Count	0
Diameter	Diameter			Initial Water Level	
Measuring Point Description				Highest Water Level	
Measuring Point Elev	vation	39.32m above MSL (Lyttelton 1937)		Lowest Water Level	
Elevation Accuracy	Elevation Accuracy			First reading	
Ground Level		0.00m above MP		Last reading	
Strata Layers		11		Calc Min 95%	10.70m below MP
Aquifer Name		Riccarton Gravel		Aquifer Tests	0
Aquifer Type		Unknown		Yield Drawdown Tests	1
Drill Date		30 Jul 1991		Max Tested Yield	3 l/s
Driller		Dynes Road Drilling		Drawdown at Max Tested Yield	10 m
Drilling Method		Cable Tool S		Specific Capacity	0.27 l/s/m
Casing Material				Last Updated	08 Nov 2013
Pump Type		Unknown		Last Field Check	
Water Use Data		No			

Borelog for well M36/4383

Grid Reference (NZTM): 1551117 mE, 5170781 mN Location Accuracy: 50 - 300m Ground Level Altitude: 39.3 m +MSD Accuracy: < 2.5 m Driller: Dynes Road Drilling Drill Method: Cable Tool Borelog Depth: 25.0 m Drill Date: 30-Jul-1991

Scale(m)	Water Level Depth	· · ·	Full Drillers Description	Formation Code
5	12.00n		Very open small to medium gravel	SP-RI
	12.00n	000000	Claybound gravel	RI
15	16.00n	000000	Medium to small gravel claybound	RI
	17.00n	000000	Small to medium gravel, wet clay	RI
	18.00n		Sand and clay	RI
	18.90n	000000000	Gravel, small amount of water Hard layer of clay, sealed off water,	RI
20	20.00n		some sand	
	22.00n	000000000	Open small to medium gravel Open small to medium gravel	RI
	24.00n	000000000000000000000000000000000000000		
	24.50n		Small to medium gravel	BR?
1.1	25.00n	No Log No Log No	Hard layer	BR?