

Submitted to:

Hughes Developments Ltd
Christchurch

124 Montreal Street, Sydenham, Christchurch 8023 PO Box 373, Christchurch 8140, New Zealand Tel +64 3 328 9012 Fax +64 3 328 9013 www.engeo.co.nz

Contents

1	Introduction	3
2	Site Description	
3	Geological Model	5
3.1	Regional Geology	5
3.2	Geomorphology	5
3.3	Geohazards	6
3.3.1	Seismicity	6
3.3.2	Liquefaction and Lateral Spreading	7
3.4	Site Investigation	7
3.5	ECan Boreholes	7
3.6	Groundwater	8
3.7	Site Seismic Class	8
4	Liquefaction Assessment	8
8	Limitations	12

Tables

Table 1: Generalised Summary of Subsurface Conditions

Figures

Figure 1: Site Location Plan

Figure 2: Historical Aerial Photography

Figure 3: Nearby ECAN Borehole Locations

Appendices

Appendix 1: Site Plan and Inferred Paleo Channels

Appendix 2: Test Pit and Hand Auger Logs

Appendix 3: ECan Borelogs

ENGEO Document Control:

Report Title	Geotechnical Investigation - 479 E	ast Maddisons Roa	ad, Springston	
Project No.	12903.000.000	Doc ID	51	
Client	Hughes Developments Ltd	Kelvin Back	<	
Distribution (PDF)	Kelvin Back			
Date	Revision Details/Status	WP	Author	Reviewer
16/05/2019	Issued to Client	ВК	JW	GM

1 Introduction

ENGEO Ltd was requested by Hughes Development Ltd to undertake a geotechnical investigation of the property at 479 East Maddisons Road, Springston, Christchurch, as outlined in our variation proposal (ref. P2016.000.248_042).

The purpose of this assessment was to determine a geological model of the site, assess the likely future land performance, comment on the suitability of the site for residential subdivision, address the requirements of Section 106 of the Resource Management Act (RMA) and provide recommendations for subdivision works and foundations for typical timber framed residential dwellings.

Our scope of works included the following:

- Complete a desktop study of relevant available geotechnical and geological publications, including the NZ Geotechnical and Environment Canterbury Databases.
- Undertake a geotechnical site walkover.
- Undertake eight hand auger boreholes with associated Scala penetrometer tests to assess the near surface material types and strength characteristics.
- Organise and technically supervise the excavation of eight test pits, including geotechnical logging of the exposed soils.
- Preparation of this report outlining our findings on the ground conditions and the suitability of
 the site for residential subdivision, including geotechnical advice on the likely foundation
 Technical Category, conceptual foundation recommendations for typical timber framed
 residential dwellings, and address likely geohazards as required by Section 106 of the RMA.

2 Site Description

The site covers a total area of 5.492 ha, and has the following legal description (Selwyn District Council):

479 East Maddisons Road - Lot 74660 BLK III.

It is located approximately 4 km south of Rolleston town centre, rural properties border the site on all sides (Figure 1).

Figure 1: Site Location Plan

Images sourced from Canterbury Maps and "@ OpenStreetMap contributors". Not to scale.

3 Geological Model

3.1 Regional Geology

The site has been regionally mapped by GNS (Forsyth et al., 2018) as being underlain by grey river alluvium.

3.2 Geomorphology

The site comprises relatively flat ground, with gentle undulations and depressions in some areas. As evident on aerial imagery (Canterbury Maps, 2019) and observed during our site walkover conducted on 6 May 2019, undulating and depressed ground can be attributed to paleo-channels, which traverse the site in a general northwest to southeast trend. Based on observations, silt and sand deposits with variable thickness (up to 0.6 m) are expected to have in-filled the paleo-channels where they have not remained as channel features. Inferred paleo-channels have been mapped to give an indication of areas with potential channel in-fill (Appendix 1).

Figure 2: Historical Aerial Photography

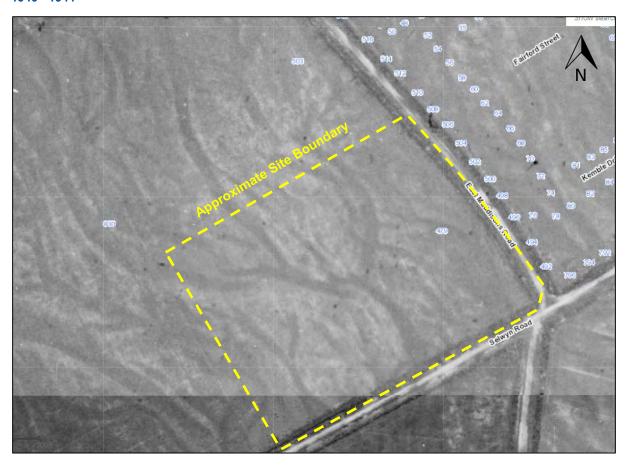


Image sourced from Canterbury Maps

1990 - 1994

Image sourced from Canterbury Maps

3.3 Geohazards

3.3.1 Seismicity

There are no known or mapped faults in the immediate area of the site, however the site may be at risk of ground shaking induced by movement of proximal or distal faults.

The site is located between two recently discovered fault systems, the Greendale Fault and the Port Hills Fault, the ruptures of which initiated the ongoing Canterbury Earthquake Sequence (CES). The Greendale Fault has been mapped approximately 5 km northwest / west of the site and trends roughly east-west with a surface rupture of approximately 28 km (GNS, 2015), while the Port Hills Fault remains unmapped as the fault did not rupture at the surface. Movement on the Port Hills Fault is believed to have occurred at a depth of 1 km to 2 km below ground surface.

Large regional areas of faulting (GNS, 2015) namely the Ashley Fault, Porters Pass - Amberley Fault Zone, and the Hope and Alpine Faults, are further afield but present a high seismic hazard to the Christchurch area due to the anticipated size of earthquakes generated. The largest of these faults is the Alpine Fault, which has a return period of 250 - 300 years and is expected to produce a M8 earthquake. The last rupture on the Alpine Fault is believed to have occurred in 1717 (Pettinga et al., 2001).

3.3.2 Liquefaction and Lateral Spreading

The site is located within an area mapped as 'damaging liquefaction unlikely' (NZGD Map CGD5140, 2012).

3.4 Site Investigation

Site investigations to assess the shallow subsurface material types and strength characteristics were undertaken by ENGEO on 7 and 9 May 2019. The investigations comprised seven hand auger boreholes and nine test pit investigations with associated Scala penetrometer tests.

The investigations revealed subsurface conditions across the site are consistent with the published geological mapping, as summarised in Table 1. Hand auger and test pit logs are included in Appendix 2 of this report.

Table 1: Generalised Summary of Subsurface Conditions

Soil Type	Depth to Top of Layer (m)	Layer Thickness (m)	Density / Consistency	Additional Comments
TOPSOIL	0.0	0.1 - 0.2	Stiff	
SILT / Gravelly SAND	0.2	0.1 - 0.4	Stiff to Very Stiff / Dense to Very Dense	Not present at all test locations
Sandy GRAVEL	0.1 - 0.4	Unknown	Dense to Very Dense	

3.5 ECan Boreholes

A review of three deep ECan borehole logs was conducted. The first (M36/4090), is located on site, and appears to be servicing the existing dwelling. The other boreholes are located on the north-western boundary (M36/7639), and approximately 90 m from the western corner boundary (M36/7902).

Well summaries from the three holes of interest are presented in Appendix 3 and indicate the site is broadly underlain by a mixture of alluvial gravels to depths of at least 36 m below ground level. M34/7639 recorded silt from 4 m to 10.5 m depth.

Figure 3: Nearby ECAN Borehole Locations

Aerial photograph sourced from Canterbury Maps. Not to scale.

3.6 Groundwater

Groundwater is recorded in the surrounding boreholes between approximately 5.2 m and 8.4 m depth.

3.7 Site Seismic Class

In accordance with NZS 1170.5:2004, Class D applies to this particular site, defining it as a 'deep soft soil site'.

4 Liquefaction Assessment

Based on our site investigation and observations, and owing to the nature of the subsurface materials and depth to groundwater at the site, we consider the potential for liquefaction and lateral spreading on the site to be very low.

We therefore consider the site of the proposed subdivision to have Technical Category 1 (TC1) future land performance whereby future land damage from liquefaction is unlikely, and ground settlements are expected to be within normally accepted tolerances.

5 RMA Section 106 Requirements and Suitability to Subdivide

Section 106 of the Resource Management Act 1991 states a consent authority may refuse to grant a subdivision consent, or may grant a consent subject to specific consent conditions if it considers that:

- There is a significant risk from natural hazards; or
- Sufficient provision has not been made for legal or physical access to each allotment to be created by the subdivision.

An assessment of the risk from natural hazards as required by the RMA includes the following:

- The likelihood of natural hazards occurring (weather individually or in combination);
- The material damage to land in respect of which the consent is sought, other land, or structures that would result from natural hazards; and
- Any likely subsequent use of the land in respect of which the consent is sought that would accelerate, worsen, or result in material damage of the kind referred to in paragraph (b).

We have assessed the risk of natural hazards at the site in accordance with Section 106 of the Resource Management Act (RMA) and considered the risk to the site from rockfall, inundation (debris), slope stability, subsidence, flooding and tsunami. Based on our observations and the nature of the site, its performance during the CES, and the site's distance from the nearest significant watercourse, we consider it is unlikely for the site to be subject to natural hazards such as rockfall, inundation (debris), slope stability, subsidence, flooding and tsunami. As such, the site is considered suitable for subdivision from a geotechnical perspective.

6 Geotechnical Recommendations

6.1 Earthworks

Earthworks carried out for the subdivision shall be in accordance with NZS 4404:2010, Land Development and Subdivision Infrastructure and NZS 4431:1989, Code of Practice for Earth filling for Residential Development. In particular, any areas to receive fill should be stripped of all vegetation, topsoil, non-engineered fill, soft or organic soils prior to fill placement.

Fill may comprise clean natural sandy gravel or silty soils, or clean imported soils and / or granular fill, compacted to achieve no less than 95% of maximum dry density. Fill faces steeper than 2V:1H and higher than 600 mm should be retained and referred back to ENGEO. Although unlikely, where any springs or groundwater seeps are encountered, they should be intercepted with suitable drainage and discharged to a Council approved outlet.

All unretained batters of pond and stormwater drains constructed with the native sandy gravel material should be at an inclination no steeper than 1V:3H, with protection schemes in place to control erosion of the formed batters within the waterways.

A comprehensive earthworks specification should be provided to the earthworks contractor prior to starting excavations and an inspection / testing regime agreed, along with a robust erosion and sediment control plan.

6.2 Subdivision Roading

Vegetation, any organic or deleterious material, topsoil and non-engineered fill should be removed from the site under pavement areas prior to aggregate placement. Based on our observations during testing, we consider the natural ground below the topsoil at the site should provide an adequate subgrade for the proposed pavement areas.

6.3 Stormwater Control

Concentrated stormwater flows from all impermeable areas must be collected and carried in sealed pipes to the Council system or an alternative disposal point subject to approval from Council. Uncontrolled stormwater must not be allowed to saturate the ground as this will potentially affect future foundation performance both statically and during future seismic activity.

6.4 Foundations

Foundations for future proposed residential dwellings within the subdivision may comprise pad, strip or slab foundations designed in accordance with the provisions of NZS 3604 Timber Framed Buildings.

Site specific testing will be required for Building Consent, to confirm the bearing materials and capacity. For preliminary design, we anticipate that a geotechnical Ultimate Bearing Capacity of 300 kPa may be assumed for foundations bearing on natural silt, sandy gravel or engineered fill, below any topsoil. We anticipate this to be typically below 0.2 m depth based on our subsurface investigations.

7 References

- Canterbury Maps, Groundwater. Retrieved May 2019, from http://canterburymaps.govt.nz/Viewer.
- Canterbury Maps, Historic Aerial Imagery. Retrieved May 2019, from https://apps.canterburymaps.govt.nz/CanterburyHistoricAerialImagery.
- Forsyth, P., Barrell, D. J., & Jongens, R. (2008). Sheet 16 Geology of the Christchurch Area 1:250,000. Lower Hutt: Institute of Geological and Nuclear Sciences.
- GNS Science (2015). New Zealand Active Faults Database. Retrieved November 2018, from http://data.gns.cri.nz /af.
- Pettinga J.R., Yetton M.D., Van Dissen R.J., & Downes G. (2001). Earthquake Source Identification and Characterisation for the Canterbury Region, South Island, New Zealand. Bulletin of the New Zealand Society for Earthquake Engineering, Vol 34, No. 4, pp 282-317.
- Selwyn District Council (2015), Selwyn District Council Operative District Plan. November 2018, http://www.selwyn.govt.nz/services/planning/district-plan.
- Selwyn District Council, Property Search, retrieved May 2019, from https://www.selwyn.govt.nz/my-property/rates/search-properties.
- Standards Association of New Zealand (1989). NZS 4431:1989. Code of Practice for Earthfilling for Residential Development.
- Standards Association of New Zealand (2004). NZS 1170.5:2004. Structural Design Actions Part 5: Earthquake Actions New Zealand.
- Standards Association of New Zealand (2010). NZS 3604:2010. Timber Framed Buildings.

Standards Association of New Zealand (2010). NZS 4404:2010. Land Development and Subdivision Infrastructure.

The Ministry of Business, Innovation, and Employment (2016). New Zealand Geotechnical Database. Retrieved November 2018, from https://www.nzgd.org.nz.

8 Limitations

- i. We have prepared this report in accordance with the brief as provided. This report has been prepared for the use of our client, Hughes Developments Ltd, their professional advisers and the relevant Territorial Authorities in relation to the specified project brief described in this report. No liability is accepted for the use of any part of the report for any other purpose or by any other person or entity.
- ii. The recommendations in this report are based on the ground conditions indicated from published sources, site assessments and subsurface investigations described in this report based on accepted normal methods of site investigations. Only a limited amount of information has been collected to meet the specific financial and technical requirements of the client's brief and this report does not purport to completely describe all the site characteristics and properties. The nature and continuity of the ground between test locations has been inferred using experience and judgement and it should be appreciated that actual conditions could vary from the assumed model.
- iii. Subsurface conditions relevant to construction works should be assessed by contractors who can make their own interpretation of the factual data provided. They should perform any additional tests as necessary for their own purposes.
- iv. This Limitation should be read in conjunction with the Engineering NZ/ACENZ Standard Terms of Engagement.
- v. This report is not to be reproduced either wholly or in part without our prior written permission.

We trust that this information meets your current requirements. Please do not hesitate to contact the undersigned on (03) 328 9012 if you require any further information.

Report prepared by

Jed Watts

Engineering Geologist

Report reviewed by

Greg Martin, CMEngNZ (PEngGeol)

Principal Engineering Geologist

APPENDIX 1:

Site Plan and Inferred Paleo Channels

APPENDIX 2:

Test Pit and Hand Auger Logs

Geotechnical Investigation 479 East Maddisons Road Springston 12903 000 000

Client : Hughes Development Ltd

Client Ref. :

Date : 07/05/2019 Hole Depth: 0.3 m

Shear Vane No : N/A Logged By: KF Reviewed By: JW

Latitude :

	1	2903.000.000	Hole Diame						Lor	atitude igitude				
Depth (m BGL) Material	S Symbol	DESCRIPTION		Graphic Symbol	Elevation (mRL)	Water Level	Moisture Cond.	Consistency/ Density Index	Shear Vane Undrained Shear Strength (kPa) Peak/Remolded				romete	
Depth (m Material	NSCS			Grap	Eleva	Wate	Mois	Cons Dens	Stre Stre Peal	2				12
TS	ML	SILT with some fine sand and trac brown. Low plasticity [TOPSOIL].		1/2 · 2 · 1/2 · 1/			D	VSt						
- 11	ML	SILT with some fine to medium sa rubber, metal, gravel and wood; lig plasticity. Gravel, fine, subangular [FILL].												
-		End of Hole Depth: 0.3 m Termination Condition: Practical re	fusal											
0.5 -														
-														
Scala Standi	Penetre	net practical refusal at 0.3 m depth of ometer met practical refusal at 0.6 of our dwater was not encountered of the contract		el.					•		•	•	•	•

Geotechnical Investigation 479 East Maddisons Road Springston 12903.000.000

Client: Hughes Development Ltd

Client Ref. :

Date : 07/05/2019 Hole Depth: 0.3 m

Logged By: KF Reviewed By: JW Latitude :

Shear Vane No: N/A

Longitude : Hole Diameter: 50 mm Shear Vane Undrained Shear Strength (kPa) Peak/Remolded Graphic Symbol Elevation (mRL) Symbol Depth (m BGL) Moisture Cond. Consistency/ Density Index Scala Penetrometer Water Level **DESCRIPTION** Material USCS 8 Blows per 100mm 6 8 10 12 SILT with some fine sand and trace rootlets; brown. Low plasticity [TOPSOIL]. \mathbf{Z} St ML SILT with some fine to medium sand and minor gravel; light brown. Low plasticity. Gravel, fine, subangular to subrounded. Μ ALLUVIUM VSt ML End of Hole Depth: 0.3 m Termination Condition: Practical refusal 0.5 SEOTECH HAND AUGER HA LOGS.GPJ NZ DATA TEMPLATE 2.GDT 16/5/19

Hand auger met practical refusal at 0.3 m depth on inferred gravel. Scala Penetrometer met practical refusal at 0.4 m depth.

Standing groundwater was not encountered

Geotechnical Investigation 479 East Maddisons Road Springston 12903.000.000 Client: Hughes Development Ltd

Client Ref. :

Date: 07/05/2019 **Hole Depth**: 0.2 m

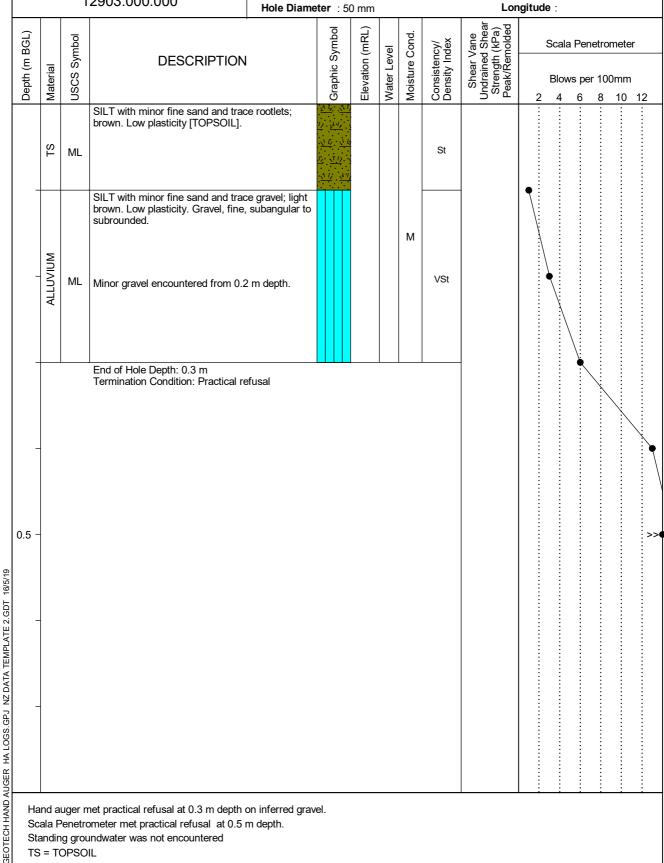
Shear Vane No : N/A

Logged By : KF Reviewed By : JW Latitude :

		1	2903.000.000	Hole Diame	eter : 5	0 mm				Lor	ngitude :
Depth (m BGL)	ial	USCS Symbol	DESCRIPTION		Graphic Symbol	Elevation (mRL)	Water Level	Moisture Cond.	Consistency/ Density Index	Shear Vane Undrained Shear Strength (kPa) Peak/Remolded	Scala Penetrometer
Depth	Material	nscs			Graph	Eleval	Water	Moist	Consi	She Undra Strer Peak	Blows per 100mm 2 4 6 8 10 12
	TS	ML	SILT with minor fine sand and trac brown. Low plasticity [TOPSOIL].		\(\frac{\delta}{1/2} \cdot \frac{\delta}{1/2}				St		
	ALLUVIUM	ML	SILT with some fine to medium sa gravel; light brown. Low plasticity. subangular to subrounded.	Gravel, fine,				M	VSt		
D AUGER HA LOGS.GPJ NZ DATA TEMPLATE 2.GDT 16/5/19 O C			End of Hole Depth: 0.2 m Termination Condition: Practical re	efusal							

Hand auger met practical refusal at 0.2 m depth on inferred gravel. Scala Penetrometer met practical refusal at 0.5 m depth. Standing groundwater was not encountered

Geotechnical Investigation 479 East Maddisons Road Springston 12903.000.000


Client: Hughes Development Ltd

Client Ref. :

Date : 07/05/2019 Hole Depth: 0.3 m

Shear Vane No: N/A Logged By: KF

> Reviewed By: JW Latitude :

Hand auger met practical refusal at 0.3 m depth on inferred gravel. Scala Penetrometer met practical refusal at 0.5 m depth.

Standing groundwater was not encountered

Geotechnical Investigation 479 East Maddisons Road Springston 12903.000.000

Client : Hughes Development Ltd

Client Ref. :

Date : 07/05/2019 Hole Depth: 0.3 m

Shear Vane No : N/A Logged By: KF

Reviewed By: JW Latitude :

		1	2903.000.000	Hole Diame						Lor	gitud					
n BGL)		symbol	DESCRIPTION		Graphic Symbol	Elevation (mRL)	evel	e Cond.	ency/ Index	Shear Vane Undrained Shear Strength (kPa) Peak/Remolded		Scala	a Pene	etrom	eter	
Depth (m BGL)	Material	USCS Symbol			Graphic	Elevatio	Water Level	Moisture Cond.	Consistency/ Density Index	Shea Undrain Streng Peak/R	2		vs per		nm IO 1	2
	TOPSOIL	ML	SILT with minor fine sand and trac brown. Low plasticity [TOPSOIL].		\(\frac{1}{2} \cdot \frac{1}{2} \cdot \frac{1}{2				St							
	ALLUVIUM	ML	SILT with some fine sand and trac brown. Low plasticity. Gravel, fine, subrounded.					М	VSt							
-			End of Hole Depth: 0.3 m Termination Condition: Practical re	fusal												>
0.5 -																
-																
_																
																:
Scal Star	la P	enetro	net practical refusal at 0.3 m depth of the practical refusal at 0.5 of the practical refusal		el.											

Geotechnical Investigation 479 East Maddisons Road Springston 12903.000.000

Client : Hughes Development Ltd

Client Ref. :

Date : 07/05/2019 Hole Depth: 0.5 m

Shear Vane No : N/A Logged By: KF Reviewed By: JW Latitude :

		1	2903.000.000	Hole Diame	eter	: 5	0 mm					gitud) :			
BGL)		loqui	DECORUNTION		loday	Symbol	(mRL)	vel	Cond.	ncy/ ndex	Vane d Shear n (kPa) molded	;	Scala	Pene	etrome	er
Depth (m BGL)	Material	USCS Symbol	DESCRIPTION		rophic o	Grapnic Symbol	Elevation (mRL)	Water Level	Moisture Cond.	Consistency/ Density Index	Shear Vane Undrained Shear Strength (kPa) Peak/Remolded	2	Blows	s per	100mi 8 10	m) 12
	TS	ML	SILT with minor fine sand and trac brown. Low plasticity [TOPSOIL].	e rootlets;	7/1/	\(\frac{\lambda \lambda \rangle}{\lambda \lambda \rangle} \]	2			VSt						
		ML	SILT with minor fine sand; light broplasticity.	own. Low						VSt			\			
_	ALLUVIUM	ML	SILT with some fine sand and trac yellowish brown. Low plasticity. Gr subangular to subrounded.	e gravel; avel, fine,					M	VSt						
_			Fine to medium gravel encountere depth.	d from 0.45 m												······································
0.5 -			End of Hole Depth: 0.5 m Termination Condition: Practical re	efusal												
_																
Sca Sta	ala P andin	enetro	net practical refusal at 0.5 m depth ometer met practical refusal at 0.6 undwater was not encountered		el.											

Geotechnical Investigation 479 East Maddisons Road Springston 12903.000.000

Client : Hughes Development Ltd

Client Ref. :

Date : 07/05/2019 Hole Depth: 0.3 m

Shear Vane No : N/A Logged By: KF

Reviewed By: JW Latitude :

	1	2903.000.000	Hole Diame	ter : 5	0 mm					gitude :			
Depth (m BGL) Material	USCS Symbol	DESCRIPTION		Graphic Symbol	Elevation (mRL)	Water Level	Moisture Cond.	Consistency/ Density Index	Shear Vane Undrained Shear Strength (kPa) Peak/Remolded		a Penetro		
Depth (m	OSO	SILT with trace gravel, sand and ro Low plasticity [TOPSOIL].	potlets; brown.	Grap	Elev	Wat	Mois	Con	S Und Str Str Pea	2 4		10 12	2
ST	ML	CII T with miner fine cond and trees	o grovel light	17. 41.				St					
ALLUVIUM	ML	SILT with minor fine sand and trac brown. Low plasticity. Gravel, fine, subrounded.	e gravel; light subangular to				М	VSt					
-		End of Hole Depth: 0.3 m Termination Condition: Practical re	ofusal										
0.5 -													>
_													
Scala F	Penetro	net practical refusal at 0.3 m depth opmeter met practical refusal at 0.5 oneter met practical refusal at 0.5 oneter was not encountered		el.									

Geotechnical Investigation 479 East Maddisons Road Springston 12903.000.000_42 Client: Hughes Development Ltd
Date: 07/05/2019

it Depth: 2 m

Shear Vane No: N/A
Logged By: KF/SC
Reviewed By: JW

Max Test Pit Depth : 2 m

Digger Type/Size : Bucket Excavator

Bucket Type/Size : 400 mm

Latitude : Longitude :

Depth (m BGL)	Material	Easier Harde		USCS Symbol	DESCRIPTION	Graphic Symbol	Elevation (mRL)	Water Level	Moisture Cond.	Consistency/ Density Index இ மூ	Shear Vand Undrained Jear Strenç ak/Remolo (kPa)	Scala th Blowed 2 4	/s per	r 100r	nm	
_	TS			SM	Silty fine to medium SAND with trace rootlets; brown. Poorly graded [TOPSOIL].	7.7.7. 7.7.7.7.			D	MD		•				
.0—	ALLUVIUM			GW	Sandy fine to course GRAVEL with minor cobbles; greyish brown. Well graded. Subrounded to rounded. Trace rootlets encountered from 1.2 m depth.				M	D					>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>	
Depth of Excavation: 2 m Termination Condition: Practical refus																
	- - - .5 - - -	- LS	Depth (m BG S s avitate ial ALLUVIUM	Scaler ALLUVIUM TS Material ALLUVIUM TS Material ALLUVIUM TS Material ALLUVIUM TS Allu	Company Comp	Relative Scale DESCRIPTION DESCRIPTION	SM Silty fine to medium SAND with trace rootlets; brown. Poorly graded [TOPSOIL]. Sandy fine to course GRAVEL with minor cobbles; greyish brown. Well graded. Subrounded to rounded. GW Trace rootlets encountered from 1.2 m depth. Depth of Excavation: 2 m	SM Silty fine to medium SAND with trace rootlets; brown. Poorly graded [TOPSOIL]. Sandy fine to course GRAVEL with minor cobbles; greyish brown. Well graded. Subrounded to rounded. GW Trace rootlets encountered from 1.2 m depth.	Silty fine to medium SAND with trace rootlets; brown. Poorly graded [TOPSOIL]. Sandy fine to course GRAVEL with minor cobbles; greyish brown. Well graded. Subrounded to rounded. GW Trace rootlets encountered from 1.2 m depth.	Silty fine to medium SAND with trace rootlets; brown. Poorly graded [TOPSOIL]. Sandy fine to course GRAVEL with minor cobbles; greyish brown. Well graded. Subrounded to rounded. GW Trace rootlets encountered from 1.2 m depth. Depth of Excavation: 2 m	Sity fine to medium SAND with trace rootlets; brown. Poorly graded [TOPSOIL]. Sandy fine to course GRAVEL with minor cobbles; greyish brown. Well graded. Subrounded to rounded. GW Trace rootlets encountered from 1.2 m depth. Depth of Excavation: 2 m	Silty fine to medium SAND with trace rootlets; brown. Poorly graded [TOPSOIL]. Sandy fine to course GRAVEL with minor cobbies; greyish brown. Well graded. Subrounded to rounded. GW Trace rootlets encountered from 1.2 m depth. Depth of Excavation: 2 m	Silty fine to medium SAND with trace rootlets; brown. Poorly graded [TOPSOIL]. Sandy fine to course GRAVEL with minor cobbles; greyish brown. Well graded. Subrounded to rounded. GW Trace rootlets encountered from 1.2 m depth. Depth of Excavation: 2 m	Sitty fine to medium SAND with trace rootlets; brown. Poorly graded [TOPSOIL]. Sandy fine to course GRAVEL with minor cobbles; greyish brown. Well graded. Subrounded to rounded. GW Trace rootlets encountered from 1.2 m depth. Depth of Excavation: 2 m	SM Silty fine to medium SAND with trace rootlets; brown. Poorly graded [TOPSOIL]. Sandy fine to course GRAVEL with minor cobbles; greyish brown. Well graded. Subrounded to rounded. GW Trace rootlets encountered from 1.2 m depth. Depth of Excavation: 2 m	Sity fine to medium SAND with trace rootlets; brown. Poorly graded [TOPSOIL]. Sandy fine to course GRAVEL with minor cobbles; greyish brown. Well graded. Subrounded to rounded. GW Trace rootlets encountered from 1.2 m Depth of Excavation: 2 m

Test pit met target depth at 2 m depth. Scala Penetrometer met practical refusal Standing groundwater was not encountered

GEOTECH TEST PIT LOG TP LOGS.GPJ NZ MASTER DATA TEMPLATE.GDT 16/5/19

Geotechnical Investigation 479 East Maddisons Road Springston 12903.000.000_42 Client : Hughes Development Ltd Shear Vane No : N/A

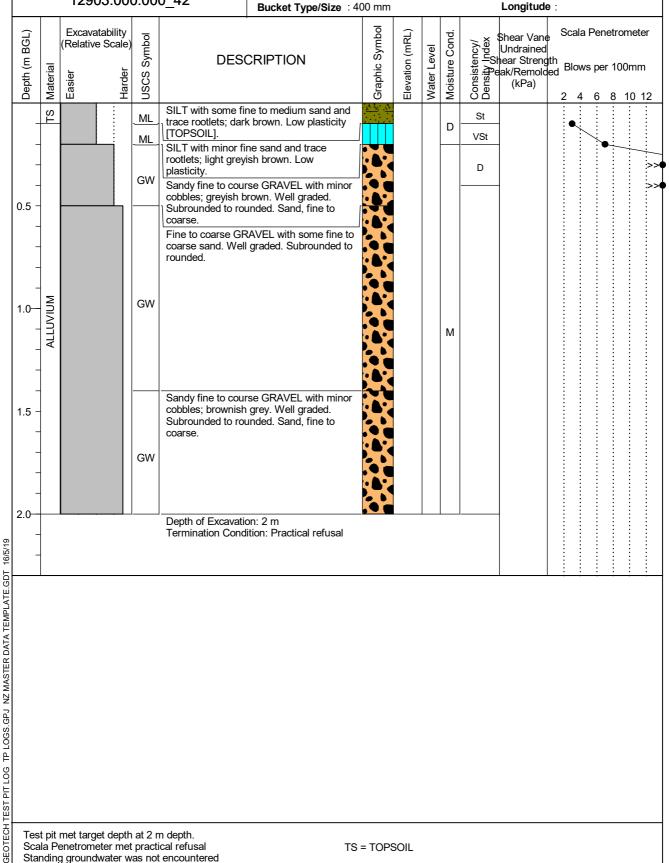
Date : 07/05/2019 Logged By : KF/SC

Max Test Pit Depth: 2 mReviewed By : JWDigger Type/Size: Bucket ExcavatorLatitude :Bucket Type/Size: 400 mmLongitude :

						Bao	itet Type/OIZe : Te	, , , , , , , , , , , , , , , , , , , ,						•		
	Deptn (m BGL)	Material	Excava (Relative	tability e Scale) le Scale	USCS Symbol	DESCRIP	TION	Graphic Symbol	Elevation (mRL)	Water Level	Moisture Cond.	Consistency/ Density Index இ மீ	Shear Vane Undrained lear Streng ak/Remold (kPa)	Scal oth ed Bloved	a Pene ws per 1 6	nm
	_	TS			ML	SILT with some fine to m trace rootlets; dark brown [TOPSOIL].		17 · 37 · 17 · 17 · 17 · 17 · 17 · 17 ·				St		•		
0.	- - .5 -				sw	Gravelly fine to medium s rootlets; brown. Well grad to coarse, subrounded.	SAND with trace ded. Gravel, fine					D			<i></i>	
1.		ALLUVIUM			GW	Sandy fine to course GR cobbles; greyish brown. \ Subrounded to rounded.	Well graded.				м	D				>>
Termination Condition: Practical refusal																
기 :																

Test pit met target depth at 2 m depth. Scala Penetrometer met practical refusal Standing groundwater was not encountered

GEOTECH TEST PIT LOG TP LOGS.GPJ NZ MASTER DATA TEMPLATE.GDT 16/5/19



Geotechnical Investigation 479 East Maddisons Road **Springston** 12903.000.000_42

Client: Hughes Development Ltd Shear Vane No: N/A Date: 07/05/2019 Logged By: KF/SC Max Test Pit Depth : 2 m Reviewed By: JW

Digger Type/Size : Bucket Excavator

Latitude : Longitude:

Geotechnical Investigation 479 East Maddisons Road Springston 12903.000.000_42 Client: Hughes Development Ltd
Date: 07/05/2019

Max Test Pit Depth: 2 m

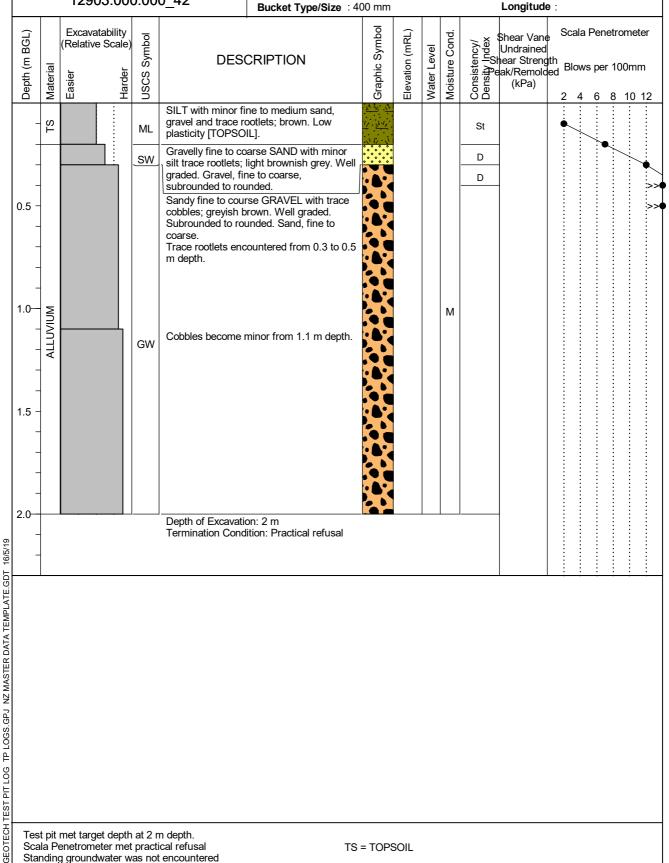
Shear Vane No: N/A
Logged By: KF/SC
Reviewed By: JW

Digger Type/Size : Bucket Excavator
Bucket Type/Size : 400 mm

Latitude : Longitude :

					_	Bucket Type/Size : 4	OU mm					Longitude) :			
Depth (m BGL)	Material	Excavat (Relative	tability Scale) Harder	USCS Symbol	DES	CRIPTION	Graphic Symbol	Elevation (mRL)	Water Level	Moisture Cond.	Consistency/ Density Index	Shear Vane Undrained lear Streng ak/Remold (kPa)	Scala th Blowed 2 4	/s per	etrome r 100m 8 10	nm
_	TS			ML	SILT with some fi rootlets; dark brow [TOPSOIL].	ne sand and trace vn. Low plasticity	7.7.7.				VSt		•			
-				SW	rootlets; brown. W	ravelly fine to coarse SAND with trace obtlets; brown. Well graded. Gravel, fine coarse, subrounded to rounded. LT with minor fine sand and trace obtlets; light greyish brown. Low asticity.				М	D					•
0.5 -				ML						D	Н					>>
1.0—	plasticity. Sandy fine to course GRAVEL with cobbles; greyish brown. Well grade Subrounded to rounded. Sand, fine coarse. Trace rootlets encountered from 0.					rse GRAVEL with minor or own. Well graded. unded. Sand, fine to countered from 0.6 m to countered from 1.3 m				М						
-	Termination Condition: Practical refusa															
														<u>:</u>		

GEOTECH TEST PIT LOG TP LOGS.GPJ NZ MASTER DATA TEMPLATE.GDT 16/5/19

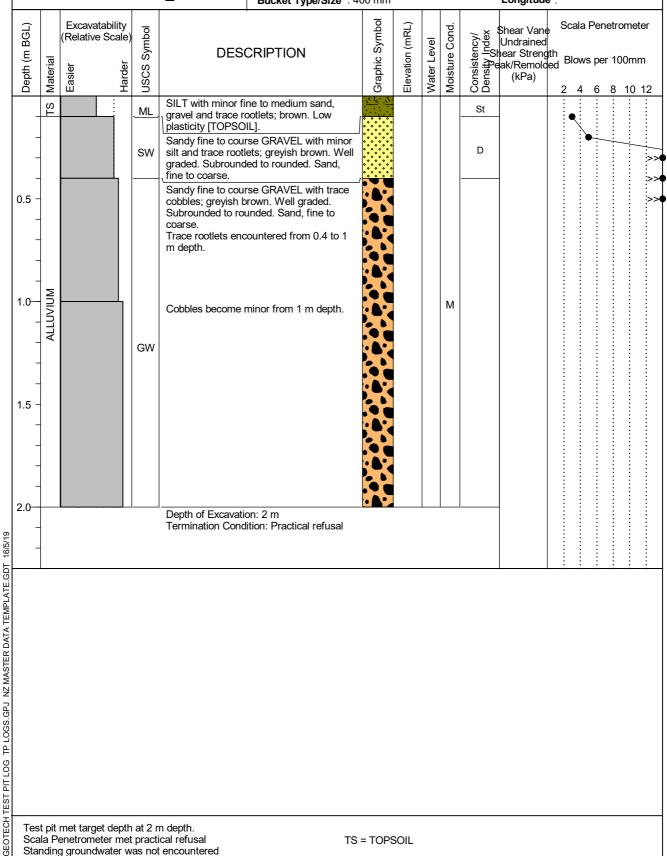


Geotechnical Investigation 479 East Maddisons Road **Springston** 12903.000.000_42

Client: Hughes Development Ltd Shear Vane No: N/A Date: 07/05/2019 Logged By: KF/SC Reviewed By: JW

Max Test Pit Depth : 2 m Digger Type/Size : Bucket Excavator

Latitude : Longitude:

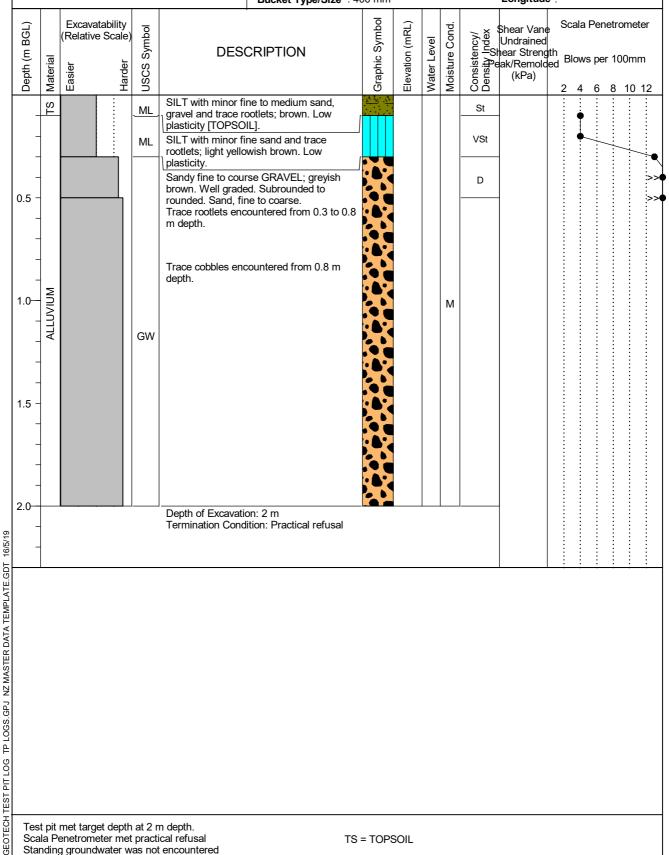


Geotechnical Investigation 479 East Maddisons Road **Springston** 12903.000.000_42

Client: Hughes Development Ltd Shear Vane No: N/A Date: 07/05/2019 Logged By: KF/SC Max Test Pit Depth : 2 m Reviewed By: JW

Digger Type/Size : Bucket Excavator Bucket Type/Size : 400 mm

Latitude : Longitude :



Geotechnical Investigation 479 East Maddisons Road **Springston** 12903.000.000 42

Client: Hughes Development Ltd Shear Vane No: N/A Date: 07/05/2019 Logged By: KF/SC Reviewed By: JW

Max Test Pit Depth : 2 m Digger Type/Size : Bucket Excavator Bucket Type/Size : 400 mm

Latitude : Longitude:

Geotechnical Investigation 479 East Maddisons Road Springston 12903.000.000_42 Client : Hughes Development Ltd Shear Vane No : N/A

Date : 07/05/2019 Logged By : KF/SC

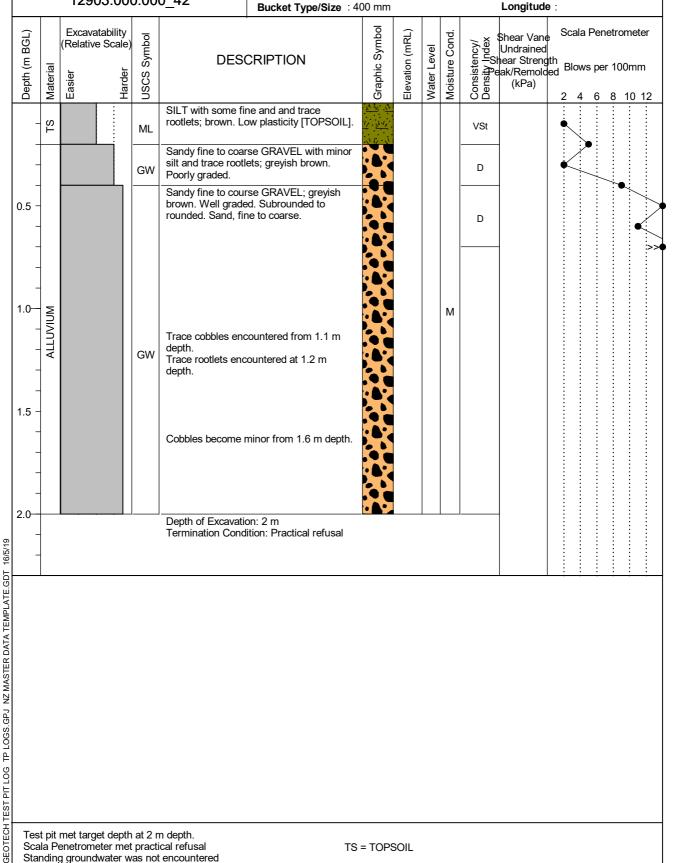
Logged By : N/A

Positional Control of the Control

Max Test Pit Depth: 2 mReviewed By : JWDigger Type/Size: Bucket ExcavatorLatitude :Bucket Type/Size: 400 mmLongitude :

				Buoket Type/OIZe : 1											┛
Depth (m BGL)	Material	Excavatability (Relative Scale)) Ju	DESCRIPTION	Graphic Symbol	Elevation (mRL)	Water Level	Moisture Cond.	Consistency/ Density Index	Shear Vand Undrained Iear Strend ak/Remold (kPa)	Scala th Blowed 2 4	vs pei	etrom r 100i 8 1	mm	
	TS		ML	SILT with some fine and and trace rootlets; brown. Low plasticity [TOPSOIL].	7/1/2/2/2/2/2/2/2/2/2/2/2/2/2/2/2/2/2/2/				VSt						
			GW	Sandy fine to coarse GRAVEL with some silt and trace rootlets; greyish brown. Poorly graded.	以				D			<u> </u>			
1.0	ALLUVIUM	GW		Sandy fine to course GRAVEL with minor cobbles; greyish brown. Well graded. Subrounded to rounded. Sand, fine to coarse.				М	D					>>	
				Depth of Excavation: 2 m Termination Condition: Practical refusal											
3															1

Test pit met target depth at 2 m depth. Scala Penetrometer met practical refusal Standing groundwater was not encountered


GEOTECH TEST PIT LOG TP LOGS.GPJ NZ MASTER DATA TEMPLATE.GDT 16/5/19

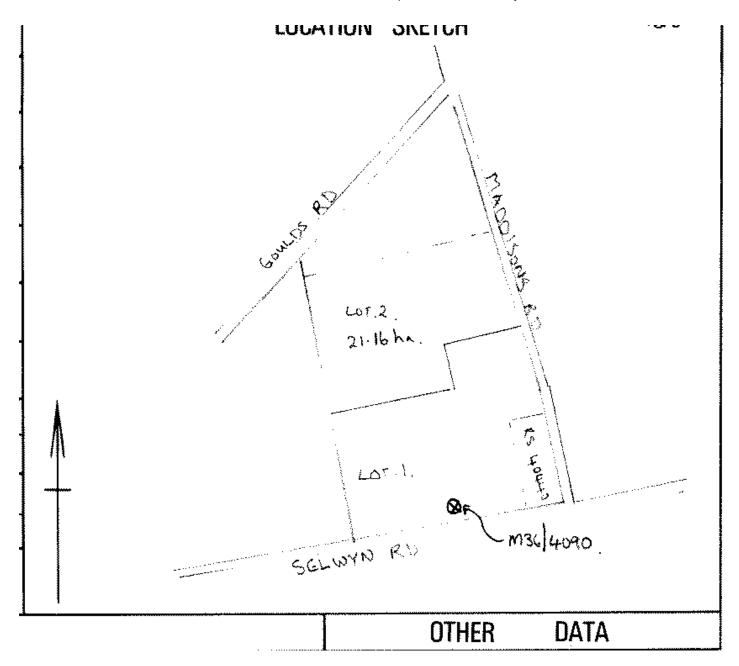
Geotechnical Investigation 479 East Maddisons Road **Springston** 12903.000.000 42

Client: Hughes Development Ltd Shear Vane No: N/A Date: 07/05/2019 Logged By: KF/SC

Max Test Pit Depth : 2 m Reviewed By: JW Digger Type/Size : Bucket Excavator Latitude :

Test pit met target depth at 2 m depth. Scala Penetrometer met practical refusal Standing groundwater was not encountered

APPENDIX 3:


ECan Borelogs

Bore or Well No	M36/4090
Well Name	SELWYN RD
Owner	DUTHIE D.J.M.

Well Number	M36/4090	File Number	CO6C/00564
Owner	DUTHIE D.J.M.	Well Status	Active (exist, present)
Street/Road	SELWYN RD	NZTM Grid Reference	BX23:50747-69211
Locality	ROLLESTON	NZTM X and Y	1550747 - 5169211
Location Description		Location Accuracy	50 - 300m
CWMS Zone	Selwyn - Waihora	Use	Irrigation, Domestic Supply
Groundwater Allocation Zone	Selwyn-Waimakariri	Water Level Monitoring	
Depth	18.30m	Water Level Count	0
Diameter	150mm	Initial Water Level	5.20m below MP
Measuring Point Description		Highest Water Level	
Measuring Point Elevation	34.90m above MSL (Lyttelton 1937)	Lowest Water Level	
Elevation Accuracy	< 2.5 m	First reading	
Ground Level	0.00m above MP	Last reading	
Strata Layers	0	Calc Min 95%	6.70m below MP
Aquifer Name	Riccarton Gravel	Aquifer Tests	0
Aquifer Type	Unknown	Yield Drawdown Tests	0
Drill Date	26 Oct 1989	Max Tested Yield	0 l/s
Driller	Weedons WellDrilling	Drawdown at Max Tested Yield	0 m
Drilling Method	Rotary/Percussion	Specific Capacity	
Casing Material	STEEL	Last Updated	05 Dec 1996
Pump Type	Unknown	Last Field Check	
Water Use Data	No		

No screen data for this well

No step tests for this well

No comments for this well

Bore or Well No	M36/7639
Well Name	0503 East Maddisons Road
Owner	Mr & Mrs DA & MG Miller

Well Number	M36/7639	File Number	CO6C/21528
Owner	Mr & Mrs DA & MG Miller	Well Status	Active (exist, present)
Street/Road	0503 East Maddisons Road	NZTM Grid Reference	BX23:50597-69331
Locality	Rolleston	NZTM X and Y	1550597 - 5169331
Location Description		Location Accuracy	50 - 300m
CWMS Zone	Selwyn - Waihora	Use	Domestic and Stockwater,
Groundwater Allocation Zone	Selwyn-Waimakariri	Water Level Monitoring	
Depth	32.00m	Water Level Count	0
Diameter	150mm	Initial Water Level	6.30m below MP
Measuring Point Description		Highest Water Level	
Measuring Point Elevation	34.28m above MSL (Lyttelton 1937)	Lowest Water Level	
Elevation Accuracy	< 5 m	First reading	
Ground Level	0.00m above MP	Last reading	
Strata Layers	9	Calc Min 95%	12.10m below MP
Aquifer Name		Aquifer Tests	0
Aquifer Type		Yield Drawdown Tests	2
Drill Date	01 Jun 2004	Max Tested Yield	7 l/s
Driller	Dynes Road Drilling	Drawdown at Max Tested Yield	10 m
Drilling Method	Cable Tool	Specific Capacity	1.05 l/s/m
Casing Material	Steel	Last Updated	08 Nov 2013
Pump Type		Last Field Check	
Water Use Data	No		

Screens

Screen No.	Screen Type	Top (m)	Bottom (m)	Slot Size (mm)	Slot Length (mm)	Diameter (mm)	Leader Length (mm)
1	Stainless steel	29	31				

Step Tests

Step Test Date	Step	Yield	Yield GPM	DrawDown	Step Duration
01 Jun 2004	1	4.2	55.43237	4	2
01 Jun 2004	2	7	92.38728	9.5	3

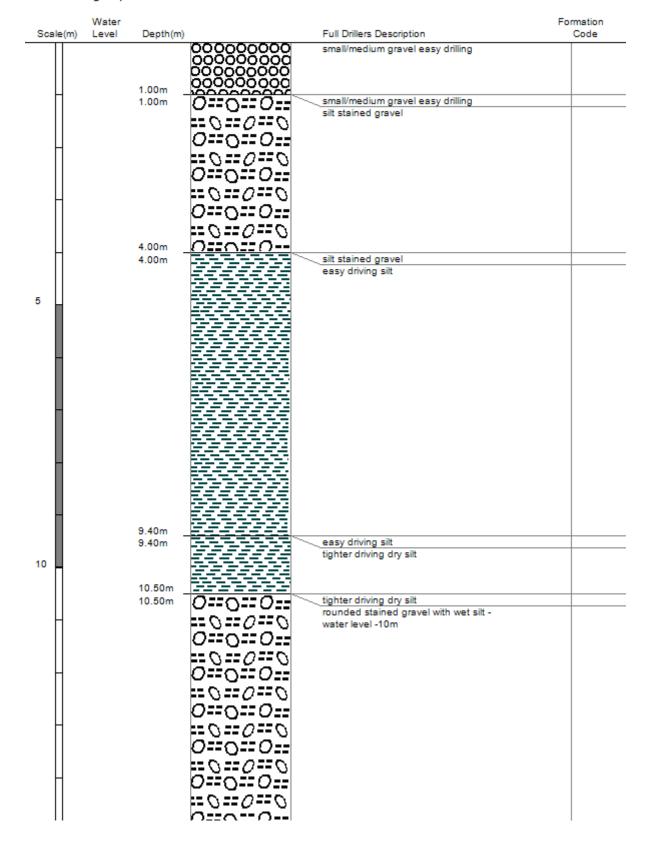
Comments

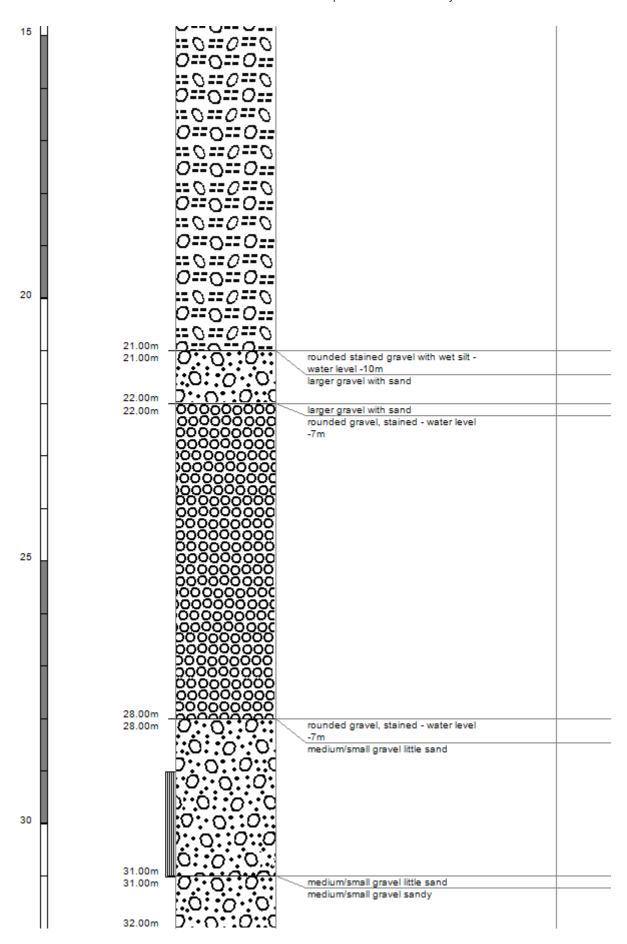
Comment Date	Comment
03 Feb 2005	Drilled to 32m pulled back to 31m.

Bore Log

Borelog for well M36/7639

Grid Reference (NZTM): 1550598 mE, 5169331 mN


Location Accuracy: 50 - 300m


Ground Level Altitude: 34.3 m +MSD Accuracy: < 0.5 m

Driller: Dynes Road Drilling Drill Method: Cable Tool

Borelog Depth: 32.0 m Drill Date: 01-Jun-2004

Bore or Well No	M36/7902
Well Name	SELWYN ROAD
Owner	RB & BM CHAPMAN & HAMILTON

Well Number	M36/7902	File Number	CO6C/23254
Owner	RB & BM CHAPMAN & HAMILTON	Well Status	Active (exist, present)
Street/Road	SELWYN ROAD	NZTM Grid Reference	BX23:50407-69271
Locality	SPRINGSTON	NZTM X and Y	1550407 - 5169271
Location Description		Location Accuracy	10 - 50m
CWMS Zone	Selwyn - Waihora	Use	Domestic and Stockwater,
Groundwater Allocation Zone	Selwyn-Waimakariri	Water Level Monitoring	
Depth	36.00m	Water Level Count	0
Diameter	150mm	Initial Water Level	8.40m below MP
Measuring Point Description	ToC	Highest Water Level	
Measuring Point Elevation	35.00m above MSL (Lyttelton 1937)	Lowest Water Level	
Elevation Accuracy	< 2.5 m	First reading	
Ground Level	0.30m below MP	Last reading	
Strata Layers	6	Calc Min 95%	
Aquifer Name		Aquifer Tests	0
Aquifer Type		Yield Drawdown Tests	1
Drill Date	09 Aug 2005	Max Tested Yield	4 l/s
Driller	East Coast Drilling	Drawdown at Max Tested Yield	16 m
Drilling Method	Rotary Rig	Specific Capacity	0.23 l/s/m
Casing Material	Steel	Last Updated	08 Nov 2013
Pump Type		Last Field Check	
Water Use Data	No		

Screens

Screen No.	Screen Type	Top (m)	Bottom (m)	Slot Size (mm)	Slot Length (mm)	Diameter (mm)	Leader Length (mm)
1	Stainless steel	34.5	36				

Step Tests

Step Test Date	Step	Yield	Yield GPM	DrawDown	Step Duration
09 Aug 2005	1	3.7	48.83328	15.8	8

No comments for this well

Bore Log

Borelog for well M36/7902

Grid Reference (NZTM): 1550408 mE, 5169271 mN

Location Accuracy: 10 - 50m

Ground Level Altitude: 34.7 m +MSD Accuracy: < 2.5 m

Driller: East Coast Drilling Drill Method: Rotary Rig

Borelog Depth: 36.0 m Drill Date: 09-Aug-2005

Scale(m) Level	Depth(m)		Full Drillers Description	Code Code
	1.00	2000	Earth	
1	1.00m	0::0::0::	sandy gravels	1
Н		:0::0::0	1300	
Н	3.00m	7		
11		000000	claybound gravels	
. П		000000		
5-1		000000		
H				
		000000		
		000000		
		000000		
10		000000		
Н		000000		
11				
П		000000		
H		000000		
Н		000000		
5		000000		
		000000		
i i		000000		
	18.00m	0:.0:.0:.	sandy gravels, some clay	-
			2942.20.04	
20		0::0::0:		
		0::0::0::		
П		0::0::0		
H				
Н		0:.0::0:		
Н		0::0::0		
25		0::0::0::		
		.000		
		-0.0.0		
-		00.0.		
	28.00m _ 28.50m	.00.0	ation .	-
	26.5011	0::0::0::	sandy gravels, water	1
10		0.0.0		
		2:0:0:0:0		
H		0:0:0:0:		
Н		0.0.0		
Ц		0.0.0		
		0::0::0		
H		0.0.0		
35		0.000		
	36.00m	4.74.7		